Difference between revisions of "User:Jon Awbrey/SEQUENCES"
Jon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) (Undo revision 107256 by Jon Awbrey (Talk)) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 2,507: | Line 2,507: | ||
===Example=== | ===Example=== | ||
− | <math>802701 = 9 \cdot 89189 = \text{p}_2^2 \text{p}_{8638}^1</math> | + | : <math>802701 = 9 \cdot 89189 = \text{p}_2^2 \text{p}_{8638}^1</math> |
− | <math>\text{Writing}~ (\operatorname{prime}(i))^j ~\text{as}~ i\!:\!j, ~\text{we have:}</math> | + | : <math>\text{Writing}~ (\operatorname{prime}(i))^j ~\text{as}~ i\!:\!j, ~\text{we have:}</math> |
− | <math>\begin{array}{lllll} | + | : <math>\begin{array}{lllll} |
802701 | 802701 | ||
& = & 9 \cdot 89189 | & = & 9 \cdot 89189 | ||
Line 2,541: | Line 2,541: | ||
\end{array}</math> | \end{array}</math> | ||
− | <math>\text{So | + | : <math>\text{So the rote of 802701 is the following graph:}\!</math> |
− | {| | + | :{| border="1" cellpadding="20" |
| [[Image:Rote 802701 Big.jpg|330px]] | | [[Image:Rote 802701 Big.jpg|330px]] | ||
|} | |} | ||
− | <math>\text{ | + | : <math>\text{By inspection, the rote height of 802701 is 6.}\!</math> |
===JPEG=== | ===JPEG=== |
Latest revision as of 18:48, 31 January 2010
A061396
Plain Wiki Table
Large Scale
ASCII
Comment * Table of Rotes and Primal Functions for Positive Integers from 1 to 40 * * o-o * | * o-o o-o o-o * | | | * o-o o-o o-o o-o * | | | | * O O O O O * * { } 1:1 2:1 1:2 3:1 * * 1 2 3 4 5 * * * o-o o-o o-o * | | | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o---o o-o o-o * | | | | | | | * O===O O O O O===O * * 1:1 2:1 4:1 1:3 2:2 1:1 3:1 * * 6 7 8 9 10 * * * o-o * | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * o-o o-o o-o o===o-o o-o o-o o-o o-o * | | | | | | | | * O O=====O O O===O O===O * * 5:1 1:2 2:1 6:1 1:1 4:1 2:1 3:1 * * 11 12 13 14 15 * * * o-o o-o * | | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o---o o-o o-o o-o * | | | | | | | * O O O===O O O=====O * * 1:4 7:1 1:1 2:2 8:1 1:2 3:1 * * 16 17 18 19 20 * * * o-o * | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o---o o-o o-o o-o o-o * | | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o---o * | | | | | | | | * O===O O===O O O=====O O * * 2:1 4:1 1:1 5:1 9:1 1:3 2:1 3:2 * * 21 22 23 24 25 * * * o-o * | * o-o o-o o-o o-o o-o * | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | | | * o-o o===o-o o---o o-o o-o o===o-o o-o o-o o-o * | | | | | | | | | * O===O O O=====O O O===O===O * * 1:1 6:1 2:3 1:2 4:1 10:1 1:1 2:1 3:1 * * 26 27 28 29 30 * * * o-o * | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * O O O===O O===O O===O * * 11:1 1:5 2:1 5:1 1:1 7:1 3:1 4:1 * * 31 32 33 34 35 * * * o-o * | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | | | | * o-o o---o o=====o-o o-o o-o o-o o===o-o o-o o-o * | | | | | | | | | * O=====O O O===O O===O O=====O * * 1:2 2:2 12:1 1:1 8:1 2:1 6:1 1:3 3:1 * * 36 37 38 39 40 * * In these Figures, "extended lines of identity" like o===o * indicate identified nodes and capital O is the root node. * The rote height in gammas is found by finding the number * of graphs of the following shape between the root and one * of the highest nodes of the tree: * o--o * | * o * A sequence like this, that can be regarded as a nonnegative integer * measure on positive integers, may have as many as 3 other sequences * associated with it. Given that the fiber of a function f at n is all * the domain elements that map to n, we always have the fiber minimum * or minimum inverse function and may also have the fiber cardinality * and the fiber maximum or maximum inverse function. For A109301, the * minimum inverse is A007097(n) = min {k : A109301(k) = n}, giving the * first positive integer whose rote height is n, the fiber cardinality * is A109300, giving the number of positive integers of rote height n, * while the maximum inverse, g(n) = max {k : A109301(k) = n}, giving * the last positive integer whose rote height is n, has the following * initial terms: g(0) = { } = 1, g(1) = 1:1 = 2, g(2) = 1:2 2:2 = 36, * while g(3) = 1:36 2:36 3:36 4:36 6:36 9:36 12:36 18:36 36:36 = * (2 3 5 7 13 23 37 61 151)^36 = 21399271530^36 = roughly * 7.840858554516122655953405327738 x 10^371. Example * Writing (prime(i))^j as i:j, we have: * 802701 = 2:2 8638:1 * 8638 = 1:1 4:1 113:1 * 113 = 30:1 * 30 = 1:1 2:1 3:1 * 4 = 1:2 * 3 = 2:1 * 2 = 1:1 * 1 = { } * So rote(802701) is the graph: * * o-o * | * o-o o-o * | | * o-o o-o o-o o-o * | | | | * o-o o===o===o-o * | | * o-o o-o o-o o-o o---------o * | | | | | * o---o o===o=====o---------o * | | * O=======O * * Therefore rhig(802701) = 6.
A111795
JPEG
\(\begin{array}{l} \varnothing \\ 1 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 \\ 2 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) |
\(\begin{array}{l} 3\!:\!1 \\ 5 \end{array}\) |
\(\begin{array}{l} 4\!:\!1 \\ 7 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 \\ 8 \end{array}\) |
\(\begin{array}{l} 5\!:\!1 \\ 11 \end{array}\) |
\(\begin{array}{l} 1\!:\!4 \\ 16 \end{array}\) |
\(\begin{array}{l} 7\!:\!1 \\ 17 \end{array}\) |
\(\begin{array}{l} 8\!:\!1 \\ 19 \end{array}\) |
\(\begin{array}{l} 11\!:\!1 \\ 31 \end{array}\) |
\(\begin{array}{l} 1\!:\!5 \\ 32 \end{array}\) |
\(\begin{array}{l} 16\!:\!1 \\ 53 \end{array}\) |
\(\begin{array}{l} 17\!:\!1 \\ 59 \end{array}\) |
ASCII
Example * Tables of Rotes and Primal Codes for a(1) to a(9) * * o-o * | * o-o o-o o-o o-o o-o * | | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * O O O O O O O O O * * { } 1:1 2:1 1:2 3:1 4:1 1:3 5:1 1:4 * * 1 2 3 4 5 7 8 11 16 *
A111800
TeX + JPEG
\(\text{Writing}~ \operatorname{prime}(i)^j ~\text{as}~ i\!:\!j, 2500 = 4 \cdot 625 = 2^2 5^4 = 1\!:\!2 ~~ 3\!:\!4 ~\text{has the following rote:}\)
\(\text{So}~ a(2500) = a(1\!:\!2 ~~ 3\!:\!4) = a(1) + a(2) + a(3) + a(4) + 1 = 1 + 3 + 5 + 5 + 1 = 15.\)
ASCII
Example * Writing prime(i)^j as i:j and using equal signs between identified nodes: * 2500 = 4 * 625 = 2^2 5^4 = 1:2 3:4 has the following rote: * * o-o o-o * | | * o-o o-o o-o * | | | * o-o o---o * | | * O=====O * * So a(2500) = a(1:2 3:4) = a(1)+a(2)+a(3)+a(4)+1 = 1+3+5+5+1 = 15.