Difference between revisions of "Exclusive disjunction"

MyWikiBiz, Author Your Legacy — Sunday January 12, 2025
Jump to navigationJump to search
(→‎Document history: name correction)
(→‎Document history: del xs www's)
Line 158: Line 158:
 
* [http://mywikibiz.com/Exclusive_disjunction Exclusive Disjunction], [http://mywikibiz.com/ MyWikiBiz]
 
* [http://mywikibiz.com/Exclusive_disjunction Exclusive Disjunction], [http://mywikibiz.com/ MyWikiBiz]
 
* [http://beta.wikiversity.org/wiki/Exclusive_disjunction Exclusive Disjunction], [http://beta.wikiversity.org/ Wikiversity Beta]
 
* [http://beta.wikiversity.org/wiki/Exclusive_disjunction Exclusive Disjunction], [http://beta.wikiversity.org/ Wikiversity Beta]
* [http://www.getwiki.net/-Exclusive_Disjunction Exclusive Disjunction], [http://www.getwiki.net/ GetWiki]
+
* [http://getwiki.net/-Exclusive_Disjunction Exclusive Disjunction], [http://getwiki.net/ GetWiki]
 
{{col-break}}
 
{{col-break}}
* [http://www.wikinfo.org/index.php/Exclusive_disjunction Exclusive Disjunction], [http://www.wikinfo.org/ Wikinfo]
+
* [http://wikinfo.org/index.php/Exclusive_disjunction Exclusive Disjunction], [http://wikinfo.org/ Wikinfo]
* [http://www.textop.org/wiki/index.php?title=Exclusive_disjunction Exclusive Disjunction], [http://www.textop.org/wiki/ Textop Wiki]
+
* [http://textop.org/wiki/index.php?title=Exclusive_disjunction Exclusive Disjunction], [http://textop.org/wiki/ Textop Wiki]
 
* [http://en.wikipedia.org/w/index.php?title=Exclusive_disjunction&oldid=75153068 Exclusive Disjunction], [http://en.wikipedia.org/ Wikipedia]
 
* [http://en.wikipedia.org/w/index.php?title=Exclusive_disjunction&oldid=75153068 Exclusive Disjunction], [http://en.wikipedia.org/ Wikipedia]
 
{{col-end}}
 
{{col-end}}

Revision as of 15:14, 15 May 2010

This page belongs to resource collections on Logic and Inquiry.

Exclusive disjunction, also known as logical inequality or symmetric difference, is an operation on two logical values, typically the values of two propositions, that produces a value of true just in case exactly one of its operands is true.

The truth table of p XOR q (also written as p + q or p ≠ q) is as follows:


Exclusive Disjunction
p q p XOR q
F F F
F T T
T F T
T T F


The following equivalents can then be deduced:

\[\begin{matrix} p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ \\ & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\ \\ & = & (p \lor q) & \land & \lnot (p \land q) \end{matrix}\]

Syllabus

Focal nodes

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Peer nodes

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Related articles

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

Template:Col-breakTemplate:Col-breakTemplate:Col-end
<sharethis />