Difference between revisions of "User:Jon Awbrey/TABLE"
Jon Awbrey (talk | contribs) (→Higher Order Propositions: add new table set) |
Jon Awbrey (talk | contribs) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 5,525: | Line 5,525: | ||
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
|- style="height:50px" | |- style="height:50px" | ||
− | | width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot</math> | + | | width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> |
| width="22%" style="border-bottom:1px solid black" | | | width="22%" style="border-bottom:1px solid black" | | ||
<math>\operatorname{T}_{00}</math> | <math>\operatorname{T}_{00}</math> | ||
Line 5,564: | Line 5,564: | ||
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
|- style="height:50px" | |- style="height:50px" | ||
− | | width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot</math> | + | | width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> |
| width="22%" style="border-bottom:1px solid black" | | | width="22%" style="border-bottom:1px solid black" | | ||
<math>\operatorname{e}</math> | <math>\operatorname{e}</math> | ||
Line 6,331: | Line 6,331: | ||
\end{tabular}\end{quote} | \end{tabular}\end{quote} | ||
</pre> | </pre> | ||
+ | |||
+ | ==Group Operation Tables== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" | ||
+ | |+ <math>\text{Table 32.1}~~\text{Scheme of a Group Operation Table}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>*\!</math> | ||
+ | | style="border-bottom:1px solid black" | <math>x_0\!</math> | ||
+ | | style="border-bottom:1px solid black" | <math>\cdots\!</math> | ||
+ | | style="border-bottom:1px solid black" | <math>x_j\!</math> | ||
+ | | style="border-bottom:1px solid black" | <math>\cdots\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_0\!</math> | ||
+ | | <math>x_0 * x_0\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>x_0 * x_j\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_i\!</math> | ||
+ | | <math>x_i * x_0\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>x_i * x_j\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" | ||
+ | |+ <math>\text{Table 32.2}~~\text{Scheme of the Regular Ante-Representation}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_0\!</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(x_0 ~,~ x_0 * x_0),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>(x_j ~,~ x_0 * x_j),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_i\!</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(x_0 ~,~ x_i * x_0),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>(x_j ~,~ x_i * x_j),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="18%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="18%" | <math>\cdots\!</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" | ||
+ | |+ <math>\text{Table 32.3}~~\text{Scheme of the Regular Post-Representation}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_0\!</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(x_0 ~,~ x_0 * x_0),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>(x_j ~,~ x_j * x_0),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_i\!</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(x_0 ~,~ x_0 * x_i),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>(x_j ~,~ x_j * x_i),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="18%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="18%" | <math>\cdots\!</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 33.1}~~\text{Multiplication Operation of the Group}~V_4</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{e}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{f}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{g}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{h}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 33.2}~~\text{Regular Representation of the Group}~V_4</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="16%" | <math>(\operatorname{e}, \operatorname{e}),</math> | ||
+ | | width="20%" | <math>(\operatorname{f}, \operatorname{f}),</math> | ||
+ | | width="20%" | <math>(\operatorname{g}, \operatorname{g}),</math> | ||
+ | | width="16%" | <math>(\operatorname{h}, \operatorname{h})</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{e}, \operatorname{f}),</math> | ||
+ | | <math>(\operatorname{f}, \operatorname{e}),</math> | ||
+ | | <math>(\operatorname{g}, \operatorname{h}),</math> | ||
+ | | <math>(\operatorname{h}, \operatorname{g})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{e}, \operatorname{g}),</math> | ||
+ | | <math>(\operatorname{f}, \operatorname{h}),</math> | ||
+ | | <math>(\operatorname{g}, \operatorname{e}),</math> | ||
+ | | <math>(\operatorname{h}, \operatorname{f})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{e}, \operatorname{h}),</math> | ||
+ | | <math>(\operatorname{f}, \operatorname{g}),</math> | ||
+ | | <math>(\operatorname{g}, \operatorname{f}),</math> | ||
+ | | <math>(\operatorname{h}, \operatorname{e})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Symbols}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="16%" | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> | ||
+ | | width="20%" | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> | ||
+ | | width="20%" | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> | ||
+ | | width="16%" | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 34.1}~~\text{Multiplicative Presentation of the Group}~Z_4(\cdot)</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{a}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{b}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{c}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{a}</math> | ||
+ | | <math>\operatorname{b}</math> | ||
+ | | <math>\operatorname{c}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{a}</math> | ||
+ | | <math>\operatorname{a}</math> | ||
+ | | <math>\operatorname{b}</math> | ||
+ | | <math>\operatorname{c}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{b}</math> | ||
+ | | <math>\operatorname{b}</math> | ||
+ | | <math>\operatorname{c}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{a}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{c}</math> | ||
+ | | <math>\operatorname{c}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{a}</math> | ||
+ | | <math>\operatorname{b}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 34.2}~~\text{Regular Representation of the Group}~Z_4(\cdot)</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="16%" | <math>(\operatorname{1}, \operatorname{1}),</math> | ||
+ | | width="20%" | <math>(\operatorname{a}, \operatorname{a}),</math> | ||
+ | | width="20%" | <math>(\operatorname{b}, \operatorname{b}),</math> | ||
+ | | width="16%" | <math>(\operatorname{c}, \operatorname{c})</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{a}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{a}),</math> | ||
+ | | <math>(\operatorname{a}, \operatorname{b}),</math> | ||
+ | | <math>(\operatorname{b}, \operatorname{c}),</math> | ||
+ | | <math>(\operatorname{c}, \operatorname{1})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{b}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{b}),</math> | ||
+ | | <math>(\operatorname{a}, \operatorname{c}),</math> | ||
+ | | <math>(\operatorname{b}, \operatorname{1}),</math> | ||
+ | | <math>(\operatorname{c}, \operatorname{a})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{c}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{c}),</math> | ||
+ | | <math>(\operatorname{a}, \operatorname{1}),</math> | ||
+ | | <math>(\operatorname{b}, \operatorname{a}),</math> | ||
+ | | <math>(\operatorname{c}, \operatorname{b})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 35.1}~~\text{Additive Presentation of the Group}~Z_4(+)</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>+\!</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{0}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{2}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{3}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{0}</math> | ||
+ | | <math>\operatorname{0}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{2}</math> | ||
+ | | <math>\operatorname{3}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{2}</math> | ||
+ | | <math>\operatorname{3}</math> | ||
+ | | <math>\operatorname{0}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{2}</math> | ||
+ | | <math>\operatorname{2}</math> | ||
+ | | <math>\operatorname{3}</math> | ||
+ | | <math>\operatorname{0}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{3}</math> | ||
+ | | <math>\operatorname{3}</math> | ||
+ | | <math>\operatorname{0}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{2}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 35.2}~~\text{Regular Representation of the Group}~Z_4(+)</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-right:1px solid black" | <math>\operatorname{0}</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="16%" | <math>(\operatorname{0}, \operatorname{0}),</math> | ||
+ | | width="20%" | <math>(\operatorname{1}, \operatorname{1}),</math> | ||
+ | | width="20%" | <math>(\operatorname{2}, \operatorname{2}),</math> | ||
+ | | width="16%" | <math>(\operatorname{3}, \operatorname{3})</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{0}, \operatorname{1}),</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{2}),</math> | ||
+ | | <math>(\operatorname{2}, \operatorname{3}),</math> | ||
+ | | <math>(\operatorname{3}, \operatorname{0})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{2}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{0}, \operatorname{2}),</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{3}),</math> | ||
+ | | <math>(\operatorname{2}, \operatorname{0}),</math> | ||
+ | | <math>(\operatorname{3}, \operatorname{1})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{3}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{0}, \operatorname{3}),</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{0}),</math> | ||
+ | | <math>(\operatorname{2}, \operatorname{1}),</math> | ||
+ | | <math>(\operatorname{3}, \operatorname{2})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
==Higher Order Propositions== | ==Higher Order Propositions== |
Latest revision as of 03:22, 26 April 2012
Cactus Language
Ascii Tables
o-------------------o | | | @ | | | o-------------------o | | | o | | | | | @ | | | o-------------------o | | | a | | @ | | | o-------------------o | | | a | | o | | | | | @ | | | o-------------------o | | | a b c | | @ | | | o-------------------o | | | a b c | | o o o | | \|/ | | o | | | | | @ | | | o-------------------o | | | a b | | o---o | | | | | @ | | | o-------------------o | | | a b | | o---o | | \ / | | @ | | | o-------------------o | | | a b | | o---o | | \ / | | o | | | | | @ | | | o-------------------o | | | a b c | | o--o--o | | \ / | | \ / | | @ | | | o-------------------o | | | a b c | | o o o | | | | | | | o--o--o | | \ / | | \ / | | @ | | | o-------------------o | | | b c | | o o | | a | | | | o--o--o | | \ / | | \ / | | @ | | | o-------------------o |
Table 13. The Existential Interpretation o----o-------------------o-------------------o-------------------o | Ex | Cactus Graph | Cactus Expression | Existential | | | | | Interpretation | o----o-------------------o-------------------o-------------------o | | | | | | 1 | @ | " " | true. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | o | | | | | | | | | | 2 | @ | ( ) | untrue. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | 3 | @ | a | a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | | o | | | | | | | | | | 4 | @ | (a) | not a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | 5 | @ | a b c | a and b and c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o o o | | | | | \|/ | | | | | o | | | | | | | | | | 6 | @ | ((a)(b)(c)) | a or b or c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | | | a implies b. | | | a b | | | | | o---o | | if a then b. | | | | | | | | 7 | @ | ( a (b)) | no a sans b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | a exclusive-or b. | | | \ / | | | | 8 | @ | ( a , b ) | a not equal to b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | | | | \ / | | | | | o | | a if & only if b. | | | | | | | | 9 | @ | (( a , b )) | a equates with b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o--o--o | | | | | \ / | | | | | \ / | | just one false | | 10 | @ | ( a , b , c ) | out of a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o o o | | | | | | | | | | | | | o--o--o | | | | | \ / | | | | | \ / | | just one true | | 11 | @ | ((a),(b),(c)) | among a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | | | genus a over | | | b c | | species b, c. | | | o o | | | | | a | | | | partition a | | | o--o--o | | among b & c. | | | \ / | | | | | \ / | | whole pie a: | | 12 | @ | ( a ,(b),(c)) | slices b, c. | | | | | | o----o-------------------o-------------------o-------------------o |
Table 14. The Entitative Interpretation o----o-------------------o-------------------o-------------------o | En | Cactus Graph | Cactus Expression | Entitative | | | | | Interpretation | o----o-------------------o-------------------o-------------------o | | | | | | 1 | @ | " " | untrue. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | o | | | | | | | | | | 2 | @ | ( ) | true. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | 3 | @ | a | a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | | o | | | | | | | | | | 4 | @ | (a) | not a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | 5 | @ | a b c | a or b or c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o o o | | | | | \|/ | | | | | o | | | | | | | | | | 6 | @ | ((a)(b)(c)) | a and b and c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | | | a implies b. | | | | | | | | o a | | if a then b. | | | | | | | | 7 | @ b | (a) b | not a, or b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | a if & only if b. | | | \ / | | | | 8 | @ | ( a , b ) | a equates with b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | | | | \ / | | | | | o | | a exclusive-or b. | | | | | | | | 9 | @ | (( a , b )) | a not equal to b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o--o--o | | | | | \ / | | | | | \ / | | not just one true | | 10 | @ | ( a , b , c ) | out of a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o--o--o | | | | | \ / | | | | | \ / | | | | | o | | | | | | | | just one true | | 11 | @ | (( a , b , c )) | among a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | | o | | genus a over | | | | b c | | species b, c. | | | o--o--o | | | | | \ / | | partition a | | | \ / | | among b & c. | | | o | | | | | | | | whole pie a: | | 12 | @ | (((a), b , c )) | slices b, c. | | | | | | o----o-------------------o-------------------o-------------------o |
Table 15. Existential & Entitative Interpretations of Cactus Structures o-----------------o-----------------o-----------------o-----------------o | Cactus Graph | Cactus String | Existential | Entitative | | | | Interpretation | Interpretation | o-----------------o-----------------o-----------------o-----------------o | | | | | | @ | " " | true | false | | | | | | o-----------------o-----------------o-----------------o-----------------o | | | | | | o | | | | | | | | | | | @ | ( ) | false | true | | | | | | o-----------------o-----------------o-----------------o-----------------o | | | | | | C_1 ... C_k | | | | | @ | C_1 ... C_k | C_1 & ... & C_k | C_1 v ... v C_k | | | | | | o-----------------o-----------------o-----------------o-----------------o | | | | | | C_1 C_2 C_k | | Just one | Not just one | | o---o-...-o | | | | | \ / | | of the C_j, | of the C_j, | | \ / | | | | | \ / | | j = 1 to k, | j = 1 to k, | | \ / | | | | | @ | (C_1, ..., C_k) | is not true. | is true. | | | | | | o-----------------o-----------------o-----------------o-----------------o |
Wiki TeX Tables
|- |
\(\text{Object}\!\) | \(\text{Sign}\!\) | \(\text{Interpretant}\!\) |
\(\begin{matrix} o_1 \\ o_2 \\ o_3 \\ \ldots \\ o_k \\ \ldots \end{matrix}\) |
\(\begin{matrix} s \\ s \\ s \\ \ldots \\ s \\ \ldots \end{matrix}\) |
\(\begin{matrix} \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \end{matrix}\) |
|}
| ||||||
|
Sign Relations
O | = | Object Domain | |
S | = | Sign Domain | |
I | = | Interpretant Domain |
O | = | {Ann, Bob} | = | {A, B} | |
S | = | {"Ann", "Bob", "I", "You"} | = | {"A", "B", "i", "u"} | |
I | = | {"Ann", "Bob", "I", "You"} | = | {"A", "B", "i", "u"} |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "i" |
A | "i" | "A" |
A | "i" | "i" |
B | "B" | "B" |
B | "B" | "u" |
B | "u" | "B" |
B | "u" | "u" |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "u" |
A | "u" | "A" |
A | "u" | "u" |
B | "B" | "B" |
B | "B" | "i" |
B | "i" | "B" |
B | "i" | "i" |
Triadic Relations
Algebraic Examples
X | Y | Z |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
X | Y | Z |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Semiotic Examples
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "i" |
A | "i" | "A" |
A | "i" | "i" |
B | "B" | "B" |
B | "B" | "u" |
B | "u" | "B" |
B | "u" | "u" |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "u" |
A | "u" | "A" |
A | "u" | "u" |
B | "B" | "B" |
B | "B" | "i" |
B | "i" | "B" |
B | "i" | "i" |
Dyadic Projections
LOS | = | projOS(L) | = | { (o, s) ∈ O × S : (o, s, i) ∈ L for some i ∈ I } | |
LSO | = | projSO(L) | = | { (s, o) ∈ S × O : (o, s, i) ∈ L for some i ∈ I } | |
LIS | = | projIS(L) | = | { (i, s) ∈ I × S : (o, s, i) ∈ L for some o ∈ O } | |
LSI | = | projSI(L) | = | { (s, i) ∈ S × I : (o, s, i) ∈ L for some o ∈ O } | |
LOI | = | projOI(L) | = | { (o, i) ∈ O × I : (o, s, i) ∈ L for some s ∈ S } | |
LIO | = | projIO(L) | = | { (i, o) ∈ I × O : (o, s, i) ∈ L for some s ∈ S } |
Method 1 : Subtitles as Captions
|
|
|
|
|
|
Method 2 : Subtitles as Top Rows
projOS(LA)
|
projOS(LB)
|
projSI(LA)
|
projSI(LB)
|
projOI(LA)
|
projOI(LB)
|
Relation Reduction
Method 1 : Subtitles as Captions
X | Y | Z |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
X | Y | Z |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
|
|
|
|
|
|
projXY(L0) = projXY(L1) | projXZ(L0) = projXZ(L1) | projYZ(L0) = projYZ(L1) |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "i" |
A | "i" | "A" |
A | "i" | "i" |
B | "B" | "B" |
B | "B" | "u" |
B | "u" | "B" |
B | "u" | "u" |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "u" |
A | "u" | "A" |
A | "u" | "u" |
B | "B" | "B" |
B | "B" | "i" |
B | "i" | "B" |
B | "i" | "i" |
|
|
|
|
|
|
projXY(LA) ≠ projXY(LB) | projXZ(LA) ≠ projXZ(LB) | projYZ(LA) ≠ projYZ(LB) |
Method 2 : Subtitles as Top Rows
X | Y | Z |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
X | Y | Z |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
projXY(L0)
|
projXZ(L0)
|
projYZ(L0)
|
projXY(L1)
|
projXZ(L1)
|
projYZ(L1)
|
projXY(L0) = projXY(L1) | projXZ(L0) = projXZ(L1) | projYZ(L0) = projYZ(L1) |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "i" |
A | "i" | "A" |
A | "i" | "i" |
B | "B" | "B" |
B | "B" | "u" |
B | "u" | "B" |
B | "u" | "u" |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "u" |
A | "u" | "A" |
A | "u" | "u" |
B | "B" | "B" |
B | "B" | "i" |
B | "i" | "B" |
B | "i" | "i" |
projXY(LA)
|
projXZ(LA)
|
projYZ(LA)
|
projXY(LB)
|
projXZ(LB)
|
projYZ(LB)
|
projXY(LA) ≠ projXY(LB) | projXZ(LA) ≠ projXZ(LB) | projYZ(LA) ≠ projYZ(LB) |
Formatted Text Display
- So in a triadic fact, say, the example
A gives B to C |
- we make no distinction in the ordinary logic of relations between the subject nominative, the direct object, and the indirect object. We say that the proposition has three logical subjects. We regard it as a mere affair of English grammar that there are six ways of expressing this:
A gives B to C | A benefits C with B |
B enriches C at expense of A | C receives B from A |
C thanks A for B | B leaves A for C |
- These six sentences express one and the same indivisible phenomenon. (C.S. Peirce, "The Categories Defended", MS 308 (1903), EP 2, 170-171).
Work Area
x0 | x1 | 2f0 | 2f1 | 2f2 | 2f3 | 2f4 | 2f5 | 2f6 | 2f7 | 2f8 | 2f9 | 2f10 | 2f11 | 2f12 | 2f13 | 2f14 | 2f15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Draft 1
|
|
|
Draft 2
|
|
|
Inquiry and Analogy
Test Patterns
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
Table 10
\(x\): | 1 0 | \(f\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) |
\(f_0\) | 0 0 | \(0\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_1\) | 0 1 | \((x)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_2\) | 1 0 | \(x\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(f_3\) | 1 1 | \(1\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
\(x:\) | 1 0 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) |
\(f_0\) | 0 0 | \(0\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_1\) | 0 1 | \((x)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_2\) | 1 0 | \(x\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(f_3\) | 1 1 | \(1\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Table 11
Measure | Happening | Exactness | Existence | Linearity | Uniformity | Information |
\(m_0\!\) | Nothing happens | |||||
\(m_1\!\) | Just false | Nothing exists | ||||
\(m_2\!\) | Just not \(x\!\) | |||||
\(m_3\!\) | Nothing is \(x\!\) | |||||
\(m_4\!\) | Just \(x\!\) | |||||
\(m_5\!\) | Everything is \(x\!\) | \(f\!\) is linear | ||||
\(m_6\!\) | \(f\!\) is not uniform | \(f\!\) is informed | ||||
\(m_7\!\) | Not just true | |||||
\(m_8\!\) | Just true | |||||
\(m_9\!\) | \(f\!\) is uniform | \(f\!\) is not informed | ||||
\(m_{10}\!\) | Something is not \(x\!\) | \(f\!\) is not linear | ||||
\(m_{11}\!\) | Not just \(x\!\) | |||||
\(m_{12}\!\) | Something is \(x\!\) | |||||
\(m_{13}\!\) | Not just not \(x\!\) | |||||
\(m_{14}\!\) | Not just false | Something exists | ||||
\(m_{15}\!\) | Anything happens |
Table 12
\(x:\) \(y:\) |
1100 1010 |
\(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | \(m_{16}\) | \(m_{17}\) | \(m_{18}\) | \(m_{19}\) | \(m_{20}\) | \(m_{21}\) | \(m_{22}\) | \(m_{23}\) |
\(f_0\) | 0000 | \((~)\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_1\) | 0001 | \((x)(y)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | ||
\(f_2\) | 0010 | \((x) y\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | ||||
\(f_3\) | 0011 | \((x)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
\(f_4\) | 0100 | \(x (y)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||
\(f_5\) | 0101 | \((y)\!\) | ||||||||||||||||||||||||
\(f_6\) | 0110 | \((x, y)\!\) | ||||||||||||||||||||||||
\(f_7\) | 0111 | \((x y)\!\) | ||||||||||||||||||||||||
\(f_8\) | 1000 | \(x y\!\) | ||||||||||||||||||||||||
\(f_9\) | 1001 | \(((x, y))\!\) | ||||||||||||||||||||||||
\(f_{10}\) | 1010 | \(y\!\) | ||||||||||||||||||||||||
\(f_{11}\) | 1011 | \((x (y))\!\) | ||||||||||||||||||||||||
\(f_{12}\) | 1100 | \(x\!\) | ||||||||||||||||||||||||
\(f_{13}\) | 1101 | \(((x) y)\!\) | ||||||||||||||||||||||||
\(f_{14}\) | 1110 | \(((x)(y))\!\) | ||||||||||||||||||||||||
\(f_{15}\) | 1111 | \(((~))\!\) |
\(u:\) \(v:\) |
1100 1010 |
\(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | \(m_{16}\) | \(m_{17}\) | \(m_{18}\) | \(m_{19}\) | \(m_{20}\) | \(m_{21}\) | \(m_{22}\) | \(m_{23}\) |
\(f_0\) | 0000 | \((~)\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_1\) | 0001 | \((u)(v)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_2\) | 0010 | \((u) v\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(f_3\) | 0011 | \((u)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_4\) | 0100 | \(u (v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
\(f_5\) | 0101 | \((v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_6\) | 0110 | \((u, v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_7\) | 0111 | \((u v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_8\) | 1000 | \(u v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_9\) | 1001 | \(((u, v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{10}\) | 1010 | \(v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{15}\) | 1111 | \(((~))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 13
\(u:\) \(v:\) |
1100 1010 |
\(f\!\) | \(\alpha_0\) | \(\alpha_1\) | \(\alpha_2\) | \(\alpha_3\) | \(\alpha_4\) | \(\alpha_5\) | \(\alpha_6\) | \(\alpha_7\) | \(\alpha_8\) | \(\alpha_9\) | \(\alpha_{10}\) | \(\alpha_{11}\) | \(\alpha_{12}\) | \(\alpha_{13}\) | \(\alpha_{14}\) | \(\alpha_{15}\) |
\(f_0\) | 0000 | \((~)\) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_2\) | 0010 | \((u) v\!\) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_5\) | 0101 | \((v)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_7\) | 0111 | \((u v)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_8\) | 1000 | \(u v\!\) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_9\) | 1001 | \(((u, v))\!\) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{10}\) | 1010 | \(v\!\) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
\(f_{11}\) | 1011 | \((u (v))\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
\(f_{12}\) | 1100 | \(u\!\) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
\(f_{13}\) | 1101 | \(((u) v)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
\(f_{14}\) | 1110 | \(((u)(v))\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
\(f_{15}\) | 1111 | \(((~))\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Table 14
\(u:\) \(v:\) |
1100 1010 |
\(f\!\) | \(\beta_0\) | \(\beta_1\) | \(\beta_2\) | \(\beta_3\) | \(\beta_4\) | \(\beta_5\) | \(\beta_6\) | \(\beta_7\) | \(\beta_8\) | \(\beta_9\) | \(\beta_{10}\) | \(\beta_{11}\) | \(\beta_{12}\) | \(\beta_{13}\) | \(\beta_{14}\) | \(\beta_{15}\) |
\(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
\(f_1\) | 0001 | \((u)(v)\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_2\) | 0010 | \((u) v\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_3\) | 0011 | \((u)\!\) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
\(f_4\) | 0100 | \(u (v)\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(f_5\) | 0101 | \((v)\!\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
\(f_6\) | 0110 | \((u, v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
\(f_7\) | 0111 | \((u v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
\(f_8\) | 1000 | \(u v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
\(f_9\) | 1001 | \(((u, v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_{10}\) | 1010 | \(v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
\(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
\(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
\(f_{15}\) | 1111 | \(((~))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Figure 15
Table 16
\(\begin{array}{clcl} \mathrm{A} & \mathrm{Universal~Affirmative} & \mathrm{All}\ u\ \mathrm{is}\ v & \mathrm{Indicator~of}\ u (v) = 0 \\ \mathrm{E} & \mathrm{Universal~Negative} & \mathrm{All}\ u\ \mathrm{is}\ (v) & \mathrm{Indicator~of}\ u \cdot v = 0 \\ \mathrm{I} & \mathrm{Particular~Affirmative} & \mathrm{Some}\ u\ \mathrm{is}\ v & \mathrm{Indicator~of}\ u \cdot v = 1 \\ \mathrm{O} & \mathrm{Particular~Negative} & \mathrm{Some}\ u\ \mathrm{is}\ (v) & \mathrm{Indicator~of}\ u (v) = 1 \\ \end{array}\) |
Table 17
\(u:\) \(v:\) |
1100 1010 |
\(f\!\) | \((\ell_{11})\) \(\text{No } u \) \(\text{is } v \) |
\((\ell_{10})\) \(\text{No } u \) \(\text{is }(v)\) |
\((\ell_{01})\) \(\text{No }(u)\) \(\text{is } v \) |
\((\ell_{00})\) \(\text{No }(u)\) \(\text{is }(v)\) |
\( \ell_{00} \) \(\text{Some }(u)\) \(\text{is }(v)\) |
\( \ell_{01} \) \(\text{Some }(u)\) \(\text{is } v \) |
\( \ell_{10} \) \(\text{Some } u \) \(\text{is }(v)\) |
\( \ell_{11} \) \(\text{Some } u \) \(\text{is } v \) |
\(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
\(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
\(f_2\) | 0010 | \((u) v\!\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
\(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
\(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
\(f_5\) | 0101 | \((v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
\(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
\(f_7\) | 0111 | \((u v)\!\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
\(f_8\) | 1000 | \(u v\!\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
\(f_9\) | 1001 | \(((u, v))\!\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
\(f_{10}\) | 1010 | \(v\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
\(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
\(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
\(f_{15}\) | 1111 | \(((~))\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
Table 18
\(u:\) \(v:\) |
1100 1010 |
\(f\!\) | \((\ell_{11})\) \(\text{No } u \) \(\text{is } v \) |
\((\ell_{10})\) \(\text{No } u \) \(\text{is }(v)\) |
\((\ell_{01})\) \(\text{No }(u)\) \(\text{is } v \) |
\((\ell_{00})\) \(\text{No }(u)\) \(\text{is }(v)\) |
\( \ell_{00} \) \(\text{Some }(u)\) \(\text{is }(v)\) |
\( \ell_{01} \) \(\text{Some }(u)\) \(\text{is } v \) |
\( \ell_{10} \) \(\text{Some } u \) \(\text{is }(v)\) |
\( \ell_{11} \) \(\text{Some } u \) \(\text{is } v \) |
\(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
\(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
\(f_2\) | 0010 | \((u) v\!\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
\(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
\(f_8\) | 1000 | \(u v\!\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
\(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
\(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
\(f_9\) | 1001 | \(((u, v))\!\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
\(f_5\) | 0101 | \((v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
\(f_{10}\) | 1010 | \(v\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_7\) | 0111 | \((u v)\!\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
\(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
\(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
\(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
\(f_{15}\) | 1111 | \(((~))\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
Table 19
\(\text{Mnemonic}\) | \(\text{Category}\) | \(\text{Classical Form}\) | \(\text{Alternate Form}\) | \(\text{Symmetric Form}\) | \(\text{Operator}\) |
\(\text{E}\!\) \(\text{Exclusive}\) |
\(\text{Universal}\) \(\text{Negative}\) |
\(\text{All}\ u\ \text{is}\ (v)\) | \(\text{No}\ u\ \text{is}\ v \) | \((\ell_{11})\) | |
\(\text{A}\!\) \(\text{Absolute}\) |
\(\text{Universal}\) \(\text{Affirmative}\) |
\(\text{All}\ u\ \text{is}\ v \) | \(\text{No}\ u\ \text{is}\ (v)\) | \((\ell_{10})\) | |
\(\text{All}\ v\ \text{is}\ u \) | \(\text{No}\ v\ \text{is}\ (u)\) | \(\text{No}\ (u)\ \text{is}\ v \) | \((\ell_{01})\) | ||
\(\text{All}\ (v)\ \text{is}\ u \) | \(\text{No}\ (v)\ \text{is}\ (u)\) | \(\text{No}\ (u)\ \text{is}\ (v)\) | \((\ell_{00})\) | ||
\(\text{Some}\ (u)\ \text{is}\ (v)\) | \(\text{Some}\ (u)\ \text{is}\ (v)\) | \(\ell_{00}\!\) | |||
\(\text{Some}\ (u)\ \text{is}\ v\) | \(\text{Some}\ (u)\ \text{is}\ v\) | \(\ell_{01}\!\) | |||
\(\text{O}\!\) \(\text{Obtrusive}\) |
\(\text{Particular}\) \(\text{Negative}\) |
\(\text{Some}\ u\ \text{is}\ (v)\) | \(\text{Some}\ u\ \text{is}\ (v)\) | \(\ell_{10}\!\) | |
\(\text{I}\!\) \(\text{Indefinite}\) |
\(\text{Particular}\) \(\text{Affirmative}\) |
\(\text{Some}\ u\ \text{is}\ v\) | \(\text{Some}\ u\ \text{is}\ v\) | \(\ell_{11}\!\) |