Difference between revisions of "Truth table"

MyWikiBiz, Author Your Legacy — Wednesday December 25, 2024
Jump to navigationJump to search
(apply column templates)
(table colors → table body (#f8f8ff = ghostwhite) table head (#e6e6ff = blue gray))
Line 1: Line 1:
A '''truth table''' is a tabular array that illustrates the computation of a [[boolean function]], that is, a function of the form ''f'' : '''B'''<sup>''k''</sup> &rarr; '''B''', where ''k'' is a non-negative integer and '''B''' is the [[boolean domain]] {0,&nbsp;1}.
+
A '''truth table''' is a tabular array that illustrates the computation of a [[boolean function]], that is, a function of the form <math>f : \mathbb{B}^k \to \mathbb{B},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{B}</math> is the [[boolean domain]] <math>\{ 0, 1 \}.\!</math>
  
 
==Logical negation==
 
==Logical negation==
Line 7: Line 7:
 
The truth table of '''NOT p''' (also written as '''~p''' or '''&not;p''') is as follows:
 
The truth table of '''NOT p''' (also written as '''~p''' or '''&not;p''') is as follows:
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:40%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:40%"
 
|+ '''Logical Negation'''
 
|+ '''Logical Negation'''
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
 
! style="width:20%" | p
 
! style="width:20%" | p
 
! style="width:20%" | &not;p
 
! style="width:20%" | &not;p
Line 17: Line 19:
 
| T || F
 
| T || F
 
|}
 
|}
 +
 
<br>
 
<br>
  
 
The logical negation of a proposition '''p''' is notated in different ways in various contexts of discussion and fields of application.  Among these variants are the following:
 
The logical negation of a proposition '''p''' is notated in different ways in various contexts of discussion and fields of application.  Among these variants are the following:
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; width:40%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; width:40%"
 
|+ '''Variant Notations'''
 
|+ '''Variant Notations'''
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
 
! style="text-align:center" | Notation
 
! style="text-align:center" | Notation
 
! Vocalization
 
! Vocalization
Line 36: Line 41:
 
| bang ''p''
 
| bang ''p''
 
|}
 
|}
 +
 
<br>
 
<br>
  
Line 44: Line 50:
 
The truth table of '''p AND q''' (also written as '''p &and; q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows:
 
The truth table of '''p AND q''' (also written as '''p &and; q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows:
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
 
|+ '''Logical Conjunction'''
 
|+ '''Logical Conjunction'''
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
 
! style="width:15%" | p
 
! style="width:15%" | p
 
! style="width:15%" | q
 
! style="width:15%" | q
Line 59: Line 67:
 
| T || T || T
 
| T || T || T
 
|}
 
|}
 +
 
<br>
 
<br>
  
Line 67: Line 76:
 
The truth table of '''p OR q''' (also written as '''p &or; q''') is as follows:
 
The truth table of '''p OR q''' (also written as '''p &or; q''') is as follows:
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
 
|+ '''Logical Disjunction'''
 
|+ '''Logical Disjunction'''
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
 
! style="width:15%" | p
 
! style="width:15%" | p
 
! style="width:15%" | q
 
! style="width:15%" | q
Line 82: Line 93:
 
| T || T || T
 
| T || T || T
 
|}
 
|}
 +
 
<br>
 
<br>
  
Line 90: Line 102:
 
The truth table of '''p EQ q''' (also written as '''p = q''', '''p &harr; q''', or '''p &equiv; q''') is as follows:
 
The truth table of '''p EQ q''' (also written as '''p = q''', '''p &harr; q''', or '''p &equiv; q''') is as follows:
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
 
|+ '''Logical Equality'''
 
|+ '''Logical Equality'''
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
 
! style="width:15%" | p
 
! style="width:15%" | p
 
! style="width:15%" | q
 
! style="width:15%" | q
Line 105: Line 119:
 
| T || T || T
 
| T || T || T
 
|}
 
|}
 +
 
<br>
 
<br>
  
Line 113: Line 128:
 
The truth table of '''p XOR q''' (also written as '''p + q''', '''p &oplus; q''', or '''p &ne; q''') is as follows:
 
The truth table of '''p XOR q''' (also written as '''p + q''', '''p &oplus; q''', or '''p &ne; q''') is as follows:
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
 
|+ '''Exclusive Disjunction'''
 
|+ '''Exclusive Disjunction'''
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
 
! style="width:15%" | p
 
! style="width:15%" | p
 
! style="width:15%" | q
 
! style="width:15%" | q
Line 128: Line 145:
 
| T || T || F
 
| T || T || F
 
|}
 
|}
 +
 
<br>
 
<br>
  
Line 146: Line 164:
 
The truth table associated with the material conditional '''if p then q''' (symbolized as '''p&nbsp;&rarr;&nbsp;q''') and the logical implication '''p implies q''' (symbolized as '''p&nbsp;&rArr;&nbsp;q''') is as follows:
 
The truth table associated with the material conditional '''if p then q''' (symbolized as '''p&nbsp;&rarr;&nbsp;q''') and the logical implication '''p implies q''' (symbolized as '''p&nbsp;&rArr;&nbsp;q''') is as follows:
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
 
|+ '''Logical Implication'''
 
|+ '''Logical Implication'''
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
 
! style="width:15%" | p
 
! style="width:15%" | p
 
! style="width:15%" | q
 
! style="width:15%" | q
Line 161: Line 181:
 
| T || T || T
 
| T || T || T
 
|}
 
|}
 +
 
<br>
 
<br>
  
Line 169: Line 190:
 
The truth table of '''p NAND q''' (also written as '''p&nbsp;|&nbsp;q''' or '''p&nbsp;&uarr;&nbsp;q''') is as follows:
 
The truth table of '''p NAND q''' (also written as '''p&nbsp;|&nbsp;q''' or '''p&nbsp;&uarr;&nbsp;q''') is as follows:
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
 
|+ '''Logical NAND'''
 
|+ '''Logical NAND'''
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
 
! style="width:15%" | p
 
! style="width:15%" | p
 
! style="width:15%" | q
 
! style="width:15%" | q
Line 184: Line 207:
 
| T || T || F
 
| T || T || F
 
|}
 
|}
 +
 
<br>
 
<br>
  
Line 192: Line 216:
 
The truth table of '''p NNOR q''' (also written as '''p&nbsp;&perp;&nbsp;q''' or '''p&nbsp;&darr;&nbsp;q''') is as follows:
 
The truth table of '''p NNOR q''' (also written as '''p&nbsp;&perp;&nbsp;q''' or '''p&nbsp;&darr;&nbsp;q''') is as follows:
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
 
|+ '''Logical NNOR'''
 
|+ '''Logical NNOR'''
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
 
! style="width:15%" | p
 
! style="width:15%" | p
 
! style="width:15%" | q
 
! style="width:15%" | q
Line 207: Line 233:
 
| T || T || F
 
| T || T || F
 
|}
 
|}
 +
 
<br>
 
<br>
  
Line 249: Line 276:
 
[[Category:Computer Science]]
 
[[Category:Computer Science]]
 
[[Category:Discrete Mathematics]]
 
[[Category:Discrete Mathematics]]
 +
[[Category:Formal Languages]]
 +
[[Category:Formal Sciences]]
 +
[[Category:Formal Systems]]
 +
[[Category:Linguistics]]
 
[[Category:Logic]]
 
[[Category:Logic]]
 
[[Category:Mathematics]]
 
[[Category:Mathematics]]
 +
[[Category:Philosophy]]
 +
[[Category:Semiotics]]
 +
 +
<sharethis />

Revision as of 15:10, 26 May 2009

A truth table is a tabular array that illustrates the computation of a boolean function, that is, a function of the form \(f : \mathbb{B}^k \to \mathbb{B},\) where \(k\!\) is a non-negative integer and \(\mathbb{B}\) is the boolean domain \(\{ 0, 1 \}.\!\)

Logical negation

Logical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false and a value of false when its operand is true.

The truth table of NOT p (also written as ~p or ¬p) is as follows:


Logical Negation
p ¬p
F T
T F


The logical negation of a proposition p is notated in different ways in various contexts of discussion and fields of application. Among these variants are the following:


Variant Notations
Notation Vocalization
\(\bar{p}\) bar p
\(p'\!\) p prime,

p complement

\(!p\!\) bang p


Logical conjunction

Logical conjunction is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are true.

The truth table of p AND q (also written as p ∧ q, p & q, or p\(\cdot\)q) is as follows:


Logical Conjunction
p q p ∧ q
F F F
F T F
T F F
T T T


Logical disjunction

Logical disjunction, also called logical alternation, is an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if both of its operands are false.

The truth table of p OR q (also written as p ∨ q) is as follows:


Logical Disjunction
p q p ∨ q
F F F
F T T
T F T
T T T


Logical equality

Logical equality is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both operands are false or both operands are true.

The truth table of p EQ q (also written as p = q, p ↔ q, or p ≡ q) is as follows:


Logical Equality
p q p = q
F F T
F T F
T F F
T T T


Exclusive disjunction

Exclusive disjunction, also known as logical inequality or symmetric difference, is an operation on two logical values, typically the values of two propositions, that produces a value of true just in case exactly one of its operands is true.

The truth table of p XOR q (also written as p + q, p ⊕ q, or p ≠ q) is as follows:


Exclusive Disjunction
p q p XOR q
F F F
F T T
T F T
T T F


The following equivalents can then be deduced:

\[\begin{matrix} p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ \\ & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\ \\ & = & (p \lor q) & \land & \lnot (p \land q) \end{matrix}\]

Logical implication

The logical implication and the material conditional are both associated with an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if the first operand is true and the second operand is false.

The truth table associated with the material conditional if p then q (symbolized as p → q) and the logical implication p implies q (symbolized as p ⇒ q) is as follows:


Logical Implication
p q p ⇒ q
F F T
F T T
T F F
T T T


Logical NAND

The logical NAND is a logical operation on two logical values, typically the values of two propositions, that produces a value of false if and only if both of its operands are true. In other words, it produces a value of true if and only if at least one of its operands is false.

The truth table of p NAND q (also written as p | q or p ↑ q) is as follows:


Logical NAND
p q p ↑ q
F F T
F T T
T F T
T T F


Logical NNOR

The logical NNOR is a logical operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are false. In other words, it produces a value of false if and only if at least one of its operands is true.

The truth table of p NNOR q (also written as p ⊥ q or p ↓ q) is as follows:


Logical NNOR
p q p ↓ q
F F T
F T F
T F F
T T F


See also

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end <sharethis />