Difference between revisions of "User:Jon Awbrey/GRAPHICS"
MyWikiBiz, Author Your Legacy — Wednesday December 25, 2024
Jump to navigationJump to searchJon Awbrey (talk | contribs) (→Proof 3: renumber frames) |
Jon Awbrey (talk | contribs) |
||
Line 774: | Line 774: | ||
===Analysis of contingent propositions=== | ===Analysis of contingent propositions=== | ||
− | |||
− | |||
{| align="center" cellpadding="8" | {| align="center" cellpadding="8" | ||
| [[Image:Logical Graph (P (Q)) (P (R)).jpg|500px]] || (26) | | [[Image:Logical Graph (P (Q)) (P (R)).jpg|500px]] || (26) | ||
|} | |} | ||
− | |||
− | |||
{| align="center" cellpadding="8" style="text-align:center" | {| align="center" cellpadding="8" style="text-align:center" | ||
Line 788: | Line 784: | ||
| <math>\text{Venn Diagram for}~ \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))}</math> | | <math>\text{Venn Diagram for}~ \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))}</math> | ||
|} | |} | ||
− | |||
− | |||
{| align="center" cellpadding="8" style="text-align:center" | {| align="center" cellpadding="8" style="text-align:center" | ||
Line 796: | Line 790: | ||
| <math>\text{Venn Diagram for}~ \texttt{(} p \texttt{~(} q ~ r \texttt{))}</math> | | <math>\text{Venn Diagram for}~ \texttt{(} p \texttt{~(} q ~ r \texttt{))}</math> | ||
|} | |} | ||
− | |||
− | |||
{| align="center" cellpadding="8" | {| align="center" cellpadding="8" | ||
Line 803: | Line 795: | ||
|} | |} | ||
− | + | ====Equation 1 : Proof 1==== | |
{| align="center" cellpadding="8" | {| align="center" cellpadding="8" | ||
Line 810: | Line 802: | ||
|} | |} | ||
− | + | ====Equation 1 : Proof 2==== | |
+ | |||
+ | =====Single Image Version===== | ||
{| align="center" cellpadding="8" | {| align="center" cellpadding="8" | ||
Line 817: | Line 811: | ||
|} | |} | ||
− | + | =====Serial Image Version===== | |
{| align="center" cellpadding="8" | {| align="center" cellpadding="8" | ||
Line 863: | Line 857: | ||
| (31) | | (31) | ||
|} | |} | ||
− | |||
− | |||
{| align="center" cellpadding="8" | {| align="center" cellpadding="8" | ||
Line 911: | Line 903: | ||
|} | |} | ||
− | ====Proof 3==== | + | ====Equation 1 : Proof 3==== |
{| | {| | ||
Line 1,394: | Line 1,386: | ||
=====Variant 2===== | =====Variant 2===== | ||
+ | |||
+ | {| align="center" cellpadding="8" | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center" | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-00.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-01.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Cast P.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-02.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Domination.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-03.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-04.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Emptiness.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-05.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-06.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Cast Q.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-07.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-08.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Domination.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-09.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-10.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Spike.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-11.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-12.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Cast R.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-13.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-14.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Emptiness.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-15.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Spike.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-16.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 3-17.jpg|500px]] | ||
+ | |- | ||
+ | | [[Image:Equational Inference Bar -- QED.jpg|500px]] | ||
+ | |} | ||
+ | | (40) | ||
+ | |} | ||
+ | |||
+ | ===Praeclarum Theorema : Proof by CAST=== | ||
{| align="center" cellpadding="8" | {| align="center" cellpadding="8" |
Revision as of 14:00, 27 August 2009
Cactus Graphs
Hi Res
Lo Res
Differential Logic
ASCII Graphics
Series 1
o-------------------------------------------------o | | | | | o-------------o o-------------o | | / \ / \ | | / o \ | | / /%\ \ | | / /%%%\ \ | | o o%%%%%o o | | | |%%%%%| | | | | P |%%%%%| Q | | | | |%%%%%| | | | o o%%%%%o o | | \ \%%%/ / | | \ \%/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o | f = p q | o-------------------------------------------------o Figure 22-a. Conjunction pq : X -> B |
o-------------------------------------------------o | | | | | o-------------o o-------------o | | / \ / \ | | / P o Q \ | | / /%\ \ | | / /%%%\ \ | | o o.->-.o o | | | p(q)(dp)dq |%\%/%| (p)q dp(dq) | | | | o---------------|->o<-|---------------o | | | | |%%^%%| | | | o o%%|%%o o | | \ \%|%/ / | | \ \|/ / | | \ o / | | \ /|\ / | | o-------------o | o-------------o | | | | | | | | | | | o | | (p)(q) dp dq | | | o-------------------------------------------------o | f = p q | o-------------------------------------------------o | | | Ef = p q (dp)(dq) | | | | + p (q) (dp) dq | | | | + (p) q dp (dq) | | | | + (p)(q) dp dq | | | o-------------------------------------------------o Figure 22-b. Enlargement E[pq] : EX -> B |
o-------------------------------------------------o | | | | | o-------------o o-------------o | | / \ / \ | | / P o Q \ | | / /%\ \ | | / /%%%\ \ | | o o%%%%%o o | | | (dp)dq |%%%%%| dp(dq) | | | | o<--------------|->o<-|-------------->o | | | | |%%^%%| | | | o o%%|%%o o | | \ \%|%/ / | | \ \|/ / | | \ o / | | \ /|\ / | | o-------------o | o-------------o | | | | | | | | v | | o | | dp dq | | | o-------------------------------------------------o | f = p q | o-------------------------------------------------o | | | Df = p q ((dp)(dq)) | | | | + p (q) (dp) dq | | | | + (p) q dp (dq) | | | | + (p)(q) dp dq | | | o-------------------------------------------------o Figure 22-c. Difference D[pq] : EX -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o | | / \ | | / \ | | / \ | | / \ | | / \ | | / \ | | / \ | | o o | | | | | | | | | | | | | | | G | | | | | | | | | | | | | | | o o | | \ / | | \ / | | \ T / | | \ o<------------/-------------o | | \ / | | \ / | | \ / | | o-------------------o | | | | | o---------------------------------------------------------------------o Figure 23. Elements of a Cybernetic System |
Series 2
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / o \ | | / /%\ \ | | / /%%%\ \ | | / /%%%%%\ \ | | / /%%%%%%%\ \ | | / /%%%%%%%%%\ \ | | o o%%%%%%%%%%%o o | | | |%%%%%%%%%%%| | | | | |%%%%%%%%%%%| | | | | |%%%%%%%%%%%| | | | | P |%%%%%%%%%%%| Q | | | | |%%%%%%%%%%%| | | | | |%%%%%%%%%%%| | | | | |%%%%%%%%%%%| | | | o o%%%%%%%%%%%o o | | \ \%%%%%%%%%/ / | | \ \%%%%%%%/ / | | \ \%%%%%/ / | | \ \%%%/ / | | \ \%/ / | | \ o / | | \ / \ / | | o-------------------o o-------------------o | | | | | o---------------------------------------------------------------------o Figure 24-1. Proposition pq : X -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / P o Q \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | o o (dp) (dq) o o | | | | o-->--o | | | | | | \ / | | | | | (dp) dq | \ / | dp (dq) | | | | o<-----------------o----------------->o | | | | | | | | | | | | | | | | | | | | | | | | o o | o o | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \|/ / | | \ | / | | \ /|\ / | | o-------------------o | o-------------------o | | | | | dp | dq | | | | | v | | o | | | o---------------------------------------------------------------------o Figure 24-2. Tacit Extension !e![pq] : EX -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / P o Q \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | o o (dp) (dq) o o | | | | o-->--o | | | | | | \ / | | | | | (dp) dq | \ / | dp (dq) | | | | o----------------->o<-----------------o | | | | | ^ | | | | | | | | | | | | | | | | | | o o | o o | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \|/ / | | \ | / | | \ /|\ / | | o-------------------o | o-------------------o | | | | | dp | dq | | | | | | | | o | | | o---------------------------------------------------------------------o Figure 25-1. Enlargement E[pq] : EX -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / P o Q \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | o o o o | | | | | | | | | | | | | | | (dp) dq | | dp (dq) | | | | o<---------------->o<---------------->o | | | | | ^ | | | | | | | | | | | | | | | | | | o o | o o | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \|/ / | | \ | / | | \ /|\ / | | o-------------------o | o-------------------o | | | | | dp | dq | | | | | v | | o | | | o---------------------------------------------------------------------o Figure 25-2. Difference Map D[pq] : EX -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / P o Q \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / o \ \ | | / / ^ ^ \ \ | | o o / \ o o | | | | / \ | | | | | | / \ | | | | | |/ \| | | | | (dp)/ dq dp \(dq) | | | | /| |\ | | | | / | | \ | | | | / | | \ | | | o / o o \ o | | \ v \ dp dq / v / | | \ o<--------------------->o / | | \ \ / / | | \ \ / / | | \ \ / / | | \ o / | | \ / \ / | | o-------------------o o-------------------o | | | | | o---------------------------------------------------------------------o Figure 26-1. Differential or Tangent d[pq] : EX -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / P o Q \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | o o o o | | | | | | | | | | | | | | | | dp dq | | | | | o<------------------------------->o | | | | | | | | | | | | | | | | | o | | | | o o ^ o o | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \|/ / | | \ dp | dq / | | \ /|\ / | | o-------------------o | o-------------------o | | | | | | | | | | | v | | o | | | o---------------------------------------------------------------------o Figure 26-2. Remainder r[pq] : EX -> B |
JPEG Graphics
Series 1
\(\text{Figure 22-a. Conjunction}~ pq : X \to \mathbb{B}\) |
Series 2
\(\text{Figure 24-1. Proposition}~ pq : X \to \mathbb{B}\) |
Propositional Equation Reasoning Systems
Analysis of contingent propositions
(26) |
(27) | |
\(\text{Venn Diagram for}~ \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))}\) |
(28) | |
\(\text{Venn Diagram for}~ \texttt{(} p \texttt{~(} q ~ r \texttt{))}\) |
(29) |
Equation 1 : Proof 1
(30) |
Equation 1 : Proof 2
Single Image Version
(31) |
Serial Image Version
|
(31) |
|
(33) |
Equation 1 : Proof 3
|
|
Variant 1
o-----------------------------------------------------------o | Equation E_1. Proof 3. | o-----------------------------------------------------------o | 1 | | q o o r q o r | | | | | | | p o o p p o | | \ / | | | o---------o | | \ / | | \ / | | \ / | | \ / | | o | | | | | | | | | | | | | | @ | | | o==================================< CAST "p" >=============o | 2 | | q r q r q r qr | | o o o o o o o o o | | | | | |/ |/ |/ | | o o o o o o | | \ / | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | p o---------------o---o p | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | @ | | | o==================================< Domination >===========o | 3 | | q r q r | | o o o o o o | | | | | / / / | | o o o o o o | | \ / | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | p o---------------o---o p | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 4 | | q r q r | | o o o | | | | | | | o o o | | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | p o---------------o---o p | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | @ | | | o==================================< Emptiness >============o | 5 | | q r q r | | o o o | | | | | | | o o o | | \ / | | | o-------o o | | \ / | | | \ / | | | \ / | | | o o | | | | | | | | | | | | | | p o---------------o---o p | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 6 | | q r q r | | o o o | | | | | | | o o o | | \ / | | | o-------o | | \ / | | \ / | | \ / | | o | | | | | | | | | | | p o---------------o---o p | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | @ | | | o==================================< CAST "q" >=============o | 7 | | o o | | r r | r | | | o o o o o o r | | | | | | | | | | o o o o o o | | \ / | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Domination >===========o | 8 | | o o | | r r | r | | | o o o o o o | | | | | | | | | | o o o o o o | | \ / | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 9 | | r r r | | o o o | | | | | | | o o o o o | | / | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Domination >===========o | 10 | | r r | | o o | | | | | | o o o o | | / | \ | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Spike >================o | 11 | | r r | | o o | | | | | | o o | | / | | | o-------o o | | \ / | | | \ / | | | \ / | | | o o | | | | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 12 | | r r | | o o | | | | | | o o | | / | | | o-------o | | \ / | | \ / | | \ / | | o | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< CAST "r" >=============o | 13 | | o o | | | | | | o o o o | | | | | | | | o o o o | | / | / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | r o---------------o---o r | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | q o-------o---o q | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 14 | | o o | | / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | r o---------------o---o r | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | q o-------o---o q | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Emptiness & Spike >====o | 15 | | o o 16 | | | | | | | | | | | | | | o o | | | | | | | | | | | | | | r o---------------o---o r | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | q o-------o---o q | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 17 | | r o-------o---o r | | \ / | | \ / | | \ / | | q o-------o---o q | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< QED >==================o |
(40) |
Variant 2
|
(40) |
Praeclarum Theorema : Proof by CAST
|
(40) |