Difference between revisions of "Directory:Jon Awbrey/Papers/Riffs and Rotes"

MyWikiBiz, Author Your Legacy — Thursday December 26, 2024
Jump to navigationJump to search
(update)
 
(65 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{DISPLAYTITLE:Riffs and Rotes}}
 
{{DISPLAYTITLE:Riffs and Rotes}}
__TOC__
+
<div class="nonumtoc">__TOC__</div>
  
==Riffs in Numerical Order==
+
==Idea==
 +
 
 +
Let <math>\text{p}_i\!</math> be the <math>i^\text{th}\!</math> prime, where the positive integer <math>i\!</math> is called the ''index'' of the prime  <math>\text{p}_i\!</math> and the indices are taken in such a way that <math>\text{p}_1 = 2.\!</math>  Thus the sequence of primes begins as follows:
 +
 
 +
{| align="center" cellpadding="6" width="90%"
 +
|
 +
<math>\begin{matrix}
 +
\text{p}_1 = 2,  &
 +
\text{p}_2 = 3,  &
 +
\text{p}_3 = 5,  &
 +
\text{p}_4 = 7,  &
 +
\text{p}_5 = 11, &
 +
\text{p}_6 = 13, &
 +
\text{p}_7 = 17, &
 +
\text{p}_8 = 19, &
 +
\ldots
 +
\end{matrix}</math>
 +
|}
 +
 
 +
The prime factorization of a positive integer <math>n\!</math> can be written in the following form:
 +
 
 +
{| align="center" cellpadding="6" width="90%"
 +
| <math>n ~=~ \prod_{k = 1}^{\ell} \text{p}_{i(k)}^{j(k)},\!</math>
 +
|}
 +
 
 +
where <math>\text{p}_{i(k)}^{j(k)}\!</math> is the <math>k^\text{th}\!</math> prime power in the factorization and <math>\ell\!</math> is the number of distinct prime factors dividing <math>n.\!</math>  The factorization of <math>1\!</math> is defined as <math>1\!</math> in accord with the convention that an empty product is equal to <math>1.\!</math>
 +
 
 +
Let <math>I(n)\!</math> be the set of indices of primes that divide  <math>n\!</math> and let <math>j(i, n)\!</math> be the number of times that <math>\text{p}_i\!</math> divides <math>n.\!</math>  Then the prime factorization of <math>n\!</math> can be written in the following alternative form:
 +
 
 +
{| align="center" cellpadding="6" width="90%"
 +
| <math>n ~=~ \prod_{i \in I(n)} \text{p}_{i}^{j(i, n)}.\!</math>
 +
|}
 +
 
 +
For example:
  
{| align="center" border="1" cellpadding="10"
+
{| align="center" cellpadding="6" width="90%"
|+ style="height:25px" | <math>\text{Riffs in Numerical Order}\!</math>
+
|
| valign="bottom" |
+
<math>\begin{matrix}
<p>&nbsp;</p><br>
+
123456789
<p><math>1\!</math></p><br>
+
& = & 3^2 \cdot 3607 \cdot 3803
<p><math>\begin{array}{l} \varnothing \\ 1 \end{array}</math></p>
+
& = & \text{p}_2^2 \text{p}_{504}^1 \text{p}_{529}^1.
| valign="bottom" |
+
\end{matrix}</math>
<p>[[Image:Riff 2 Big.jpg|20px]]</p><br>
+
|}
<p><math>\text{p}\!</math></p><br>
+
 
<p><math>\begin{array}{l} 1\!:\!1 \\ 2 \end{array}</math></p>
+
Each index <math>i\!</math> and exponent <math>j\!</math> appearing in the prime factorization of a positive integer <math>n\!</math> is itself a positive integer, and thus has a prime factorization of its own.
| valign="bottom" |
+
 
<p>[[Image:Riff 3 Big.jpg|40px]]</p><br>
+
Continuing with the same example, the index <math>504\!</math> has the factorization <math>2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1\!</math> and the index <math>529\!</math> has the factorization <math>{23}^2 = \text{p}_9^2.\!</math> Taking this information together with previously known factorizations allows the following replacements to be made in the expression above:
<p><math>\text{p}_\text{p}\!</math></p><br>
+
 
<p><math>\begin{array}{l} 2\!:\!1 \\ 3 \end{array}</math></p>
+
{| align="center" cellpadding="6" width="90%"
| valign="bottom" |
+
|
<p>[[Image:Riff 4 Big.jpg|40px]]</p><br>
+
<math>\begin{array}{rcl}
<p><math>\text{p}^\text{p}\!</math></p><br>
+
2 & \mapsto & \text{p}_1^1
<p><math>\begin{array}{l} 1\!:\!2 \\ 4 \end{array}</math></p>
+
\\[6pt]
| valign="bottom" |
+
504 & \mapsto & \text{p}_1^3 \text{p}_2^2 \text{p}_4^1
<p>[[Image:Riff 5 Big.jpg|65px]]</p><br>
+
\\[6pt]
<p><math>\text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
529 & \mapsto & \text{p}_9^2
<p><math>\begin{array}{l} 3\!:\!1 \\ 5 \end{array}</math></p>
+
\end{array}</math>
|-
+
|}
| valign="bottom" |
+
 
<p>[[Image:Riff 6 Big.jpg|65px]]</p><br>
+
This leads to the following development:
<p><math>\text{p} \text{p}_\text{p}\!</math></p><br>
+
 
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}</math></p>
+
{| align="center" cellpadding="6" width="90%"
| valign="bottom" |
+
|
<p>[[Image:Riff 7 Big.jpg|65px]]</p><br>
+
<math>\begin{array}{lll}
<p><math>\text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
123456789
<p><math>\begin{array}{l} 4\!:\!1 \\ 7 \end{array}</math></p>
+
& = & \text{p}_2^2 \text{p}_{504}^1 \text{p}_{529}^1
| valign="bottom" |
+
\\[12pt]
<p>[[Image:Riff 8 Big.jpg|65px]]</p><br>
+
& = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^3 \text{p}_2^2 \text{p}_4^1}^1 \text{p}_{\text{p}_9^2}^1
<p><math>\text{p}^{\text{p}_\text{p}}\!</math></p><br>
+
\end{array}</math>
<p><math>\begin{array}{l} 1\!:\!3 \\ 8 \end{array}</math></p>
+
|}
| valign="bottom" |
+
 
<p>[[Image:Riff 9 Big.jpg|40px]]</p><br>
+
Continuing to replace every index and exponent with its factorization produces the following development:
<p><math>\text{p}_\text{p}^\text{p}\!</math></p><br>
+
 
<p><math>\begin{array}{l} 2\!:\!2 \\ 9 \end{array}</math></p>
+
{| align="center" cellpadding="6" width="90%"
| valign="bottom" |
+
|
<p>[[Image:Riff 10 Big.jpg|90px]]</p><br>
+
<math>\begin{array}{lll}
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
123456789
<p><math>\begin{array}{l} 1\!:\!1 ~~ 3\!:\!1 \\ 10 \end{array}</math></p>
+
& = & \text{p}_2^2 \text{p}_{504}^1 \text{p}_{529}^1
 +
\\[18pt]
 +
& = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^3 \text{p}_2^2 \text{p}_4^1}^1 \text{p}_{\text{p}_9^2}^1
 +
\\[18pt]
 +
& = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^{\text{p}_2^1} \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^2}^1}^1 \text{p}_{\text{p}_{\text{p}_2^2}^{\text{p}_1^1}}^1
 +
\\[18pt]
 +
& = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^{\text{p}_{\text{p}_1^1}^1} \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^{\text{p}_1^1}}^1}^1 \text{p}_{\text{p}_{\text{p}_{\text{p}_1^1}^{\text{p}_1^1}}^{\text{p}_1^1}}^1
 +
\end{array}</math>
 +
|}
 +
 
 +
The <math>1\!</math>'s that appear as indices and exponents are formally redundant, conveying no information apart from the places they occupy in the resulting syntactic structure.  Leaving them tacit produces the following expression:
 +
 
 +
{| align="center" cellpadding="6" width="90%"
 +
|
 +
<math>\begin{array}{lll}
 +
123456789
 +
& = & \text{p}_{\text{p}}^{\text{p}} \text{p}_{\text{p}^{\text{p}_{\text{p}}} \text{p}_{\text{p}}^{\text{p}} \text{p}_{\text{p}^{\text{p}}}} \text{p}_{\text{p}_{\text{p}_{\text{p}}^{\text{p}}}^{\text{p}}}
 +
\end{array}</math>
 +
|}
 +
 
 +
The pattern of indices and exponents illustrated here is called a ''doubly recursive factorization'', or ''DRF''.  Applying the same procedure to any positive integer <math>n\!</math> produces an expression called the DRF of <math>n.\!</math> &nbsp; If <math>\mathbb{M}</math> is the set of positive integers, <math>\mathcal{L}</math> is the set of DRF expressions, and the mapping defined by the factorization process is denoted <math>\operatorname{drf} : \mathbb{M} \to \mathcal{L},</math> then the doubly recursive factorization of <math>n\!</math> is denoted <math>\operatorname{drf}(n).\!</math>
 +
 
 +
The forms of DRF expressions can be mapped into either one of two classes of graph-theoretical structures, called ''riffs'' and ''rotes'', respectively.
 +
 
 +
{| align=center cellpadding="6" width="90%"
 +
|-
 +
| <math>\operatorname{riff}(123456789)</math> is the following digraph:
 +
|-
 +
| align=center | [[Image:Riff 123456789 Big.jpg|220px]]
 +
|-
 +
| <math>\operatorname{rote}(123456789)</math> is the following graph:
 
|-
 
|-
 +
| align=center | [[Image:Rote 123456789 Big.jpg|345px]]
 +
|}
 +
 +
==Riffs in Numerical Order==
 +
 +
{| align="center" border="1" cellpadding="12"
 +
|+ style="height:25px" | <math>\text{Riffs in Numerical Order}\!</math>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 11 Big.jpg|90px]]</p><br>
+
<p>&nbsp;</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>1\!</math></p><br>
<p><math>\begin{array}{l} 5\!:\!1 \\ 11 \end{array}</math></p>
+
<p><math>\begin{array}{l} \varnothing \\ 1 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 12 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 2 Big.jpg|20px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_\text{p}\!</math></p><br>
+
<p><math>\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 \\ 2 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 13 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 3 Big.jpg|40px]]</p><br>
<p><math>\text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 6\!:\!1 \\ 13 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 \\ 3 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 14 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 4 Big.jpg|40px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 4\!:\!1 \\ 14 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 \\ 4 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 15 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 5 Big.jpg|65px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 3\!:\!1 \\ 15 \end{array}</math></p>
+
<p><math>\begin{array}{l} 3\!:\!1 \\ 5 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 16 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 6 Big.jpg|65px]]</p><br>
<p><math>\text{p}^{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!4 \\ 16 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 17 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 7 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 7\!:\!1 \\ 17 \end{array}</math></p>
+
<p><math>\begin{array}{l} 4\!:\!1 \\ 7 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 18 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 8 Big.jpg|65px]]</p><br>
<p><math>\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!3 \\ 8 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 19 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 9 Big.jpg|40px]]</p><br>
<p><math>\text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 8\!:\!1 \\ 19 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!2 \\ 9 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 20 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 10 Big.jpg|90px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 3\!:\!1 \\ 20 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 3\!:\!1 \\ 10 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 21 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 11 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 4\!:\!1 \\ 21 \end{array}</math></p>
+
<p><math>\begin{array}{l} 5\!:\!1 \\ 11 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 22 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 12 Big.jpg|65px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 5\!:\!1 \\ 22 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 23 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 13 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 9\!:\!1 \\ 23 \end{array}</math></p>
+
<p><math>\begin{array}{l} 6\!:\!1 \\ 13 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 24 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 14 Big.jpg|90px]]</p><br>
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!3 ~~ 2\!:\!1 \\ 24 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 4\!:\!1 \\ 14 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 25 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 15 Big.jpg|90px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 3\!:\!2 \\ 25 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 ~~ 3\!:\!1 \\ 15 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 26 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 16 Big.jpg|65px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 6\!:\!1 \\ 26 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!4 \\ 16 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 27 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 17 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!3 \\ 27 \end{array}</math></p>
+
<p><math>\begin{array}{l} 7\!:\!1 \\ 17 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 28 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 18 Big.jpg|65px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 4\!:\!1 \\ 28 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 29 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 19 Big.jpg|90px]]</p><br>
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 10\!:\!1 \\ 29 \end{array}</math></p>
+
<p><math>\begin{array}{l} 8\!:\!1 \\ 19 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 30 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 20 Big.jpg|90px]]</p><br>
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 30 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 3\!:\!1 \\ 20 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 31 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 21 Big.jpg|90px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 11\!:\!1 \\ 31 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 ~~ 4\!:\!1 \\ 21 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 32 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 22 Big.jpg|115px]]</p><br>
<p><math>\text{p}^{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!5 \\ 32 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 5\!:\!1 \\ 22 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 33 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 23 Big.jpg|65px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 5\!:\!1 \\ 33 \end{array}</math></p>
+
<p><math>\begin{array}{l} 9\!:\!1 \\ 23 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 34 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 24 Big.jpg|115px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 7\!:\!1 \\ 34 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!3 ~~ 2\!:\!1 \\ 24 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 35 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 25 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 3\!:\!1 ~~ 4\!:\!1 \\ 35 \end{array}</math></p>
+
<p><math>\begin{array}{l} 3\!:\!2 \\ 25 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 36 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 26 Big.jpg|90px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 6\!:\!1 \\ 26 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 37 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 27 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 12\!:\!1 \\ 37 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!3 \\ 27 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 38 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 28 Big.jpg|90px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 8\!:\!1 \\ 38 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 4\!:\!1 \\ 28 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 39 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 29 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 6\!:\!1 \\ 39 \end{array}</math></p>
+
<p><math>\begin{array}{l} 10\!:\!1 \\ 29 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 40 Big.jpg|135px]]</p><br>
+
<p>[[Image:Riff 30 Big.jpg|115px]]</p><br>
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!3 ~~ 3\!:\!1 \\ 40 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 30 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 41 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 31 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!</math></p><br>
<p><math>\begin{array}{l} 13\!:\!1 \\ 41 \end{array}</math></p>
+
<p><math>\begin{array}{l} 11\!:\!1 \\ 31 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 42 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 32 Big.jpg|90px]]</p><br>
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 4\!:\!1 \\ 42 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!5 \\ 32 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 43 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 33 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 14\!:\!1 \\ 43 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 ~~ 5\!:\!1 \\ 33 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 44 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 34 Big.jpg|115px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 5\!:\!1 \\ 44 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 7\!:\!1 \\ 34 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 45 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 35 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!2 ~~ 3\!:\!1 \\ 45 \end{array}</math></p>
+
<p><math>\begin{array}{l} 3\!:\!1 ~~ 4\!:\!1 \\ 35 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 46 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 36 Big.jpg|65px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 9\!:\!1 \\ 46 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 47 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 37 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 15\!:\!1 \\ 47 \end{array}</math></p>
+
<p><math>\begin{array}{l} 12\!:\!1 \\ 37 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 48 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 38 Big.jpg|115px]]</p><br>
<p><math>\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!4 ~~ 2\!:\!1 \\ 48 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 8\!:\!1 \\ 38 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 49 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 39 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p}^\text{p}}^\text{p}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 4\!:\!2 \\ 49 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 ~~ 6\!:\!1 \\ 39 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 50 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 40 Big.jpg|135px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 3\!:\!2 \\ 50 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!3 ~~ 3\!:\!1 \\ 40 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 51 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 41 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 7\!:\!1 \\ 51 \end{array}</math></p>
+
<p><math>\begin{array}{l} 13\!:\!1 \\ 41 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 52 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 42 Big.jpg|115px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 6\!:\!1 \\ 52 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 4\!:\!1 \\ 42 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 53 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 43 Big.jpg|90px]]</p><br>
<p><math>\text{p}_{\text{p}^{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 16\!:\!1 \\ 53 \end{array}</math></p>
+
<p><math>\begin{array}{l} 14\!:\!1 \\ 43 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 54 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 44 Big.jpg|115px]]</p><br>
<p><math>\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!3 \\ 54 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 5\!:\!1 \\ 44 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 55 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 45 Big.jpg|90px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 3\!:\!1 ~~ 5\!:\!1 \\ 55 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!2 ~~ 3\!:\!1 \\ 45 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 56 Big.jpg|135px]]</p><br>
+
<p>[[Image:Riff 46 Big.jpg|90px]]</p><br>
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!3 ~~ 4\!:\!1 \\ 56 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 9\!:\!1 \\ 46 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 57 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 47 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 8\!:\!1 \\ 57 \end{array}</math></p>
+
<p><math>\begin{array}{l} 15\!:\!1 \\ 47 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 58 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 48 Big.jpg|65px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 10\!:\!1 \\ 58 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!4 ~~ 2\!:\!1 \\ 48 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 59 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 49 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^\text{p}}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 17\!:\!1 \\ 59 \end{array}</math></p>
+
<p><math>\begin{array}{l} 4\!:\!2 \\ 49 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 60 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 50 Big.jpg|90px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 3\!:\!2 \\ 50 \end{array}</math></p>
|}
+
|-
 
 
==Rotes in Numerical Order==
 
 
 
{| align="center" border="1" cellpadding="6"
 
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 1 Big.jpg|20px]]</p><br>
+
<p>[[Image:Riff 51 Big.jpg|115px]]</p><br>
<p><math>1\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} \varnothing \\ 1 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 ~~ 7\!:\!1 \\ 51 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 2 Big.jpg|40px]]</p><br>
+
<p>[[Image:Riff 52 Big.jpg|90px]]</p><br>
<p><math>\text{p}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 \\ 2 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 6\!:\!1 \\ 52 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 3 Big.jpg|40px]]</p><br>
+
<p>[[Image:Riff 53 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^{\text{p}^\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 \\ 3 \end{array}</math></p>
+
<p><math>\begin{array}{l} 16\!:\!1 \\ 53 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 4 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 54 Big.jpg|90px]]</p><br>
<p><math>\text{p}^\text{p}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 \\ 4 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!3 \\ 54 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 5 Big.jpg|40px]]</p><br>
+
<p>[[Image:Riff 55 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 3\!:\!1 \\ 5 \end{array}</math></p>
+
<p><math>\begin{array}{l} 3\!:\!1 ~~ 5\!:\!1 \\ 55 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 6 Big.jpg|80px]]</p><br>
+
<p>[[Image:Riff 56 Big.jpg|135px]]</p><br>
<p><math>\text{p} \text{p}_\text{p}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!3 ~~ 4\!:\!1 \\ 56 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 7 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 57 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 4\!:\!1 \\ 7 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 ~~ 8\!:\!1 \\ 57 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 8 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 58 Big.jpg|115px]]</p><br>
<p><math>\text{p}^{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!3 \\ 8 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 10\!:\!1 \\ 58 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 9 Big.jpg|80px]]</p><br>
+
<p>[[Image:Riff 59 Big.jpg|115px]]</p><br>
<p><math>\text{p}_\text{p}^\text{p}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!2 \\ 9 \end{array}</math></p>
+
<p><math>\begin{array}{l} 17\!:\!1 \\ 59 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 10 Big.jpg|80px]]</p><br>
+
<p>[[Image:Riff 60 Big.jpg|115px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 3\!:\!1 \\ 10 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}</math></p>
|-
+
|}
 +
 
 +
==Rotes in Numerical Order==
 +
 
 +
{| align="center" border="1" cellpadding="6"
 +
|+ style="height:25px" | <math>\text{Rotes in Numerical Order}\!</math>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 11 Big.jpg|40px]]</p><br>
+
<p>[[Image:Rote 1 Big.jpg|20px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>1\!</math></p><br>
<p><math>\begin{array}{l} 5\!:\!1 \\ 11 \end{array}</math></p>
+
<p><math>\begin{array}{l} \varnothing \\ 1 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 12 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 2 Big.jpg|40px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_\text{p}\!</math></p><br>
+
<p><math>\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 \\ 2 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 13 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 3 Big.jpg|40px]]</p><br>
<p><math>\text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 6\!:\!1 \\ 13 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 \\ 3 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 14 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 4 Big.jpg|65px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 4\!:\!1 \\ 14 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 \\ 4 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 15 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 5 Big.jpg|40px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 3\!:\!1 \\ 15 \end{array}</math></p>
+
<p><math>\begin{array}{l} 3\!:\!1 \\ 5 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 16 Big.jpg|90px]]</p><br>
+
<p>[[Image:Rote 6 Big.jpg|80px]]</p><br>
<p><math>\text{p}^{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!4 \\ 16 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 17 Big.jpg|65px]]</p><br>
+
<p>[[Image:Rote 7 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 7\!:\!1 \\ 17 \end{array}</math></p>
+
<p><math>\begin{array}{l} 4\!:\!1 \\ 7 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 18 Big.jpg|120px]]</p><br>
+
<p>[[Image:Rote 8 Big.jpg|65px]]</p><br>
<p><math>\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!3 \\ 8 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 19 Big.jpg|65px]]</p><br>
+
<p>[[Image:Rote 9 Big.jpg|80px]]</p><br>
<p><math>\text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 8\!:\!1 \\ 19 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!2 \\ 9 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 20 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 10 Big.jpg|80px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 3\!:\!1 \\ 20 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 3\!:\!1 \\ 10 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 21 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 11 Big.jpg|40px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 4\!:\!1 \\ 21 \end{array}</math></p>
+
<p><math>\begin{array}{l} 5\!:\!1 \\ 11 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 22 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 12 Big.jpg|105px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 5\!:\!1 \\ 22 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 23 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 13 Big.jpg|80px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 9\!:\!1 \\ 23 \end{array}</math></p>
+
<p><math>\begin{array}{l} 6\!:\!1 \\ 13 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 24 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 14 Big.jpg|105px]]</p><br>
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!3 ~~ 2\!:\!1 \\ 24 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 4\!:\!1 \\ 14 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 25 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 15 Big.jpg|80px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 3\!:\!2 \\ 25 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 ~~ 3\!:\!1 \\ 15 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 26 Big.jpg|120px]]</p><br>
+
<p>[[Image:Rote 16 Big.jpg|90px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 6\!:\!1 \\ 26 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!4 \\ 16 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 27 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 17 Big.jpg|65px]]</p><br>
<p><math>\text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!3 \\ 27 \end{array}</math></p>
+
<p><math>\begin{array}{l} 7\!:\!1 \\ 17 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 28 Big.jpg|130px]]</p><br>
+
<p>[[Image:Rote 18 Big.jpg|120px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 4\!:\!1 \\ 28 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 29 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 19 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 10\!:\!1 \\ 29 \end{array}</math></p>
+
<p><math>\begin{array}{l} 8\!:\!1 \\ 19 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 30 Big.jpg|120px]]</p><br>
+
<p>[[Image:Rote 20 Big.jpg|105px]]</p><br>
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 30 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 3\!:\!1 \\ 20 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 31 Big.jpg|40px]]</p><br>
+
<p>[[Image:Rote 21 Big.jpg|105px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 11\!:\!1 \\ 31 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 ~~ 4\!:\!1 \\ 21 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 32 Big.jpg|65px]]</p><br>
+
<p>[[Image:Rote 22 Big.jpg|80px]]</p><br>
<p><math>\text{p}^{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!5 \\ 32 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 5\!:\!1 \\ 22 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 33 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 23 Big.jpg|80px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 5\!:\!1 \\ 33 \end{array}</math></p>
+
<p><math>\begin{array}{l} 9\!:\!1 \\ 23 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 34 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 24 Big.jpg|105px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 7\!:\!1 \\ 34 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!3 ~~ 2\!:\!1 \\ 24 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 35 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 25 Big.jpg|80px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 3\!:\!1 ~~ 4\!:\!1 \\ 35 \end{array}</math></p>
+
<p><math>\begin{array}{l} 3\!:\!2 \\ 25 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 36 Big.jpg|145px]]</p><br>
+
<p>[[Image:Rote 26 Big.jpg|120px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 6\!:\!1 \\ 26 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 37 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 27 Big.jpg|80px]]</p><br>
<p><math>\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 12\!:\!1 \\ 37 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!3 \\ 27 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 38 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 28 Big.jpg|130px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 8\!:\!1 \\ 38 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 4\!:\!1 \\ 28 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 39 Big.jpg|120px]]</p><br>
+
<p>[[Image:Rote 29 Big.jpg|80px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 6\!:\!1 \\ 39 \end{array}</math></p>
+
<p><math>\begin{array}{l} 10\!:\!1 \\ 29 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 40 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 30 Big.jpg|120px]]</p><br>
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!3 ~~ 3\!:\!1 \\ 40 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 30 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 41 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 31 Big.jpg|40px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!</math></p><br>
<p><math>\begin{array}{l} 13\!:\!1 \\ 41 \end{array}</math></p>
+
<p><math>\begin{array}{l} 11\!:\!1 \\ 31 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 42 Big.jpg|145px]]</p><br>
+
<p>[[Image:Rote 32 Big.jpg|65px]]</p><br>
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 4\!:\!1 \\ 42 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!5 \\ 32 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 43 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 33 Big.jpg|80px]]</p><br>
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 14\!:\!1 \\ 43 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 ~~ 5\!:\!1 \\ 33 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 44 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 34 Big.jpg|105px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 5\!:\!1 \\ 44 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 7\!:\!1 \\ 34 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 45 Big.jpg|120px]]</p><br>
+
<p>[[Image:Rote 35 Big.jpg|105px]]</p><br>
<p><math>\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!2 ~~ 3\!:\!1 \\ 45 \end{array}</math></p>
+
<p><math>\begin{array}{l} 3\!:\!1 ~~ 4\!:\!1 \\ 35 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 46 Big.jpg|120px]]</p><br>
+
<p>[[Image:Rote 36 Big.jpg|145px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 9\!:\!1 \\ 46 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 47 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 37 Big.jpg|105px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 15\!:\!1 \\ 47 \end{array}</math></p>
+
<p><math>\begin{array}{l} 12\!:\!1 \\ 37 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 48 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 38 Big.jpg|105px]]</p><br>
<p><math>\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!4 ~~ 2\!:\!1 \\ 48 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 8\!:\!1 \\ 38 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 49 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 39 Big.jpg|120px]]</p><br>
<p><math>\text{p}_{\text{p}^\text{p}}^\text{p}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 4\!:\!2 \\ 49 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!1 ~~ 6\!:\!1 \\ 39 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 50 Big.jpg|120px]]</p><br>
+
<p>[[Image:Rote 40 Big.jpg|105px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 3\!:\!2 \\ 50 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!3 ~~ 3\!:\!1 \\ 40 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 51 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 41 Big.jpg|80px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 7\!:\!1 \\ 51 \end{array}</math></p>
+
<p><math>\begin{array}{l} 13\!:\!1 \\ 41 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 52 Big.jpg|145px]]</p><br>
+
<p>[[Image:Rote 42 Big.jpg|145px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 6\!:\!1 \\ 52 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 4\!:\!1 \\ 42 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 53 Big.jpg|90px]]</p><br>
+
<p>[[Image:Rote 43 Big.jpg|105px]]</p><br>
<p><math>\text{p}_{\text{p}^{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 16\!:\!1 \\ 53 \end{array}</math></p>
+
<p><math>\begin{array}{l} 14\!:\!1 \\ 43 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 54 Big.jpg|120px]]</p><br>
+
<p>[[Image:Rote 44 Big.jpg|105px]]</p><br>
<p><math>\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!3 \\ 54 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 5\!:\!1 \\ 44 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 55 Big.jpg|80px]]</p><br>
+
<p>[[Image:Rote 45 Big.jpg|120px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 3\!:\!1 ~~ 5\!:\!1 \\ 55 \end{array}</math></p>
+
<p><math>\begin{array}{l} 2\!:\!2 ~~ 3\!:\!1 \\ 45 \end{array}</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 56 Big.jpg|130px]]</p><br>
+
<p>[[Image:Rote 46 Big.jpg|120px]]</p><br>
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!3 ~~ 4\!:\!1 \\ 56 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 9\!:\!1 \\ 46 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 57 Big.jpg|105px]]</p><br>
+
<p>[[Image:Rote 47 Big.jpg|80px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>\begin{array}{l} 2\!:\!1 ~~ 8\!:\!1 \\ 57 \end{array}</math></p>
+
<p><math>\begin{array}{l} 15\!:\!1 \\ 47 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 58 Big.jpg|120px]]</p><br>
+
<p>[[Image:Rote 48 Big.jpg|105px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!1 ~~ 10\!:\!1 \\ 58 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!4 ~~ 2\!:\!1 \\ 48 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 59 Big.jpg|65px]]</p><br>
+
<p>[[Image:Rote 49 Big.jpg|80px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^\text{p}}^\text{p}\!</math></p><br>
<p><math>\begin{array}{l} 17\!:\!1 \\ 59 \end{array}</math></p>
+
<p><math>\begin{array}{l} 4\!:\!2 \\ 49 \end{array}</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 50 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
 +
<p><math>\begin{array}{l} 1\!:\!1 ~~ 3\!:\!2 \\ 50 \end{array}</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 51 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
 +
<p><math>\begin{array}{l} 2\!:\!1 ~~ 7\!:\!1 \\ 51 \end{array}</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Rote 60 Big.jpg|155px]]</p><br>
+
<p>[[Image:Rote 52 Big.jpg|145px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}</math></p>
+
<p><math>\begin{array}{l} 1\!:\!2 ~~ 6\!:\!1 \\ 52 \end{array}</math></p>
|}
+
| valign="bottom" |
 
+
<p>[[Image:Rote 53 Big.jpg|90px]]</p><br>
==Selected Sequences==
+
<p><math>\text{p}_{\text{p}^{\text{p}^\text{p}}}\!</math></p><br>
 
+
<p><math>\begin{array}{l} 16\!:\!1 \\ 53 \end{array}</math></p>
{| align="center" border="1" width="90%"
+
| valign="bottom" |
|+ style="height:25px" | <math>\text{Prime Factorizations, Riffs, and Rotes}\!</math>
+
<p>[[Image:Rote 54 Big.jpg|120px]]</p><br>
|- style="height:50px; background:#f0f0ff"
+
<p><math>\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
|
+
<p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!3 \\ 54 \end{array}</math></p>
{| cellpadding="12" style="background:#f0f0ff; text-align:center; width:100%"
+
| valign="bottom" |
| width="10%" | <math>\text{Integer}\!</math>
+
<p>[[Image:Rote 55 Big.jpg|80px]]</p><br>
| width="25%" | <math>\text{Factorization}\!</math>
+
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
| width="15%" | <math>\text{Notation}\!</math>
+
<p><math>\begin{array}{l} 3\!:\!1 ~~ 5\!:\!1 \\ 55 \end{array}</math></p>
| width="25%" | <math>\text{Riff Digraph}\!</math>
 
| width="25%" | <math>\text{Rote Graph}\!</math>
 
|}
 
 
|-
 
|-
|
+
| valign="bottom" |
{| cellpadding="12" style="text-align:center; width:100%"
+
<p>[[Image:Rote 56 Big.jpg|130px]]</p><br>
| width="10%" | <math>1\!</math>
+
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
| width="25%" | <math>1\!</math>
+
<p><math>\begin{array}{l} 1\!:\!3 ~~ 4\!:\!1 \\ 56 \end{array}</math></p>
| width="15%" | &nbsp;
+
| valign="bottom" |
| width="25%" | &nbsp;
+
<p>[[Image:Rote 57 Big.jpg|105px]]</p><br>
| width="25%" | [[Image:Rote 1 Big.jpg|20px]]
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>\begin{array}{l} 2\!:\!1 ~~ 8\!:\!1 \\ 57 \end{array}</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 58 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>\begin{array}{l} 1\!:\!1 ~~ 10\!:\!1 \\ 58 \end{array}</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 59 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!</math></p><br>
 +
<p><math>\begin{array}{l} 17\!:\!1 \\ 59 \end{array}</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 60 Big.jpg|155px]]</p><br>
 +
<p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}</math></p>
 
|}
 
|}
|-
+
 
 +
==Prime Animations==
 +
 
 +
===Riffs 1 to 60===
 +
 
 +
{| align="center"
 +
| [[Image:Animation Riff 60 x 0.16.gif]]
 +
|}
 +
 
 +
===Rotes 1 to 60===
 +
 
 +
{| align="center"
 +
| [[Image:Animation Rote 60 x 0.16.gif]]
 +
|}
 +
 
 +
==Selected Sequences==
 +
 
 +
===A061396===
 +
 
 +
* '''Number of "rooted index-functional forests" (Riffs) on n nodes.'''
 +
 
 +
* '''Number of "rooted odd trees with only exponent symmetries" (Rotes) on 2n+1 nodes.'''
 +
 
 +
* [http://oeis.org/A061396 OEIS Entry for A061396].
 +
 
 +
{| align="center" border="1" width="96%"
 +
|+ style="height:24px" | <math>\text{Prime Factorizations, Riffs, Rotes, and Traversals}\!</math>
 +
|- style="height:50px; background:#f0f0ff"
 
|
 
|
{| cellpadding="12" style="text-align:center; width:100%"
+
{| cellpadding="12" style="background:#f0f0ff; text-align:center; width:100%"
| width="10%" | <math>2\!</math>
+
| width="10%" | <math>\text{Integer}\!</math>
| width="25%" | <math>\text{p}_1^1\!</math>
+
| width="19%" | <math>\text{Factorization}\!</math>
| width="15%" | <math>\text{p}\!</math>
+
| width="14%" | <math>\text{Notation}\!</math>
| width="25%" | [[Image:Riff 2 Big.jpg|20px]]
+
| width="19%" | <math>\text{Riff Digraph}\!</math>
| width="25%" | [[Image:Rote 2 Big.jpg|40px]]
+
| width="19%" | <math>\text{Rote Graph}\!</math>
 +
| width="19%" | <math>\text{Traversal}\!</math>
 +
|}
 +
|-
 +
|
 +
{| cellpadding="12" style="text-align:center; width:100%"
 +
| width="10%" | <math>1\!</math>
 +
| width="19%" | <math>1\!</math>
 +
| width="14%" | &nbsp;
 +
| width="19%" | &nbsp;
 +
| width="19%" | [[Image:Rote 1 Big.jpg|20px]]
 +
| width="19%" | &nbsp;
 +
|}
 +
|-
 +
|
 +
{| cellpadding="12" style="text-align:center; width:100%"
 +
| width="10%" | <math>2\!</math>
 +
| width="19%" | <math>\text{p}_1^1\!</math>
 +
| width="14%" | <math>\text{p}\!</math>
 +
| width="19%" | [[Image:Riff 2 Big.jpg|20px]]
 +
| width="19%" | [[Image:Rote 2 Big.jpg|40px]]
 +
| width="19%" | <math>((~))</math>
 
|}
 
|}
 
|-
 
|-
Line 550: Line 688:
 
{| cellpadding="12" style="text-align:center; width:100%"
 
{| cellpadding="12" style="text-align:center; width:100%"
 
| width="10%" | <math>3\!</math>
 
| width="10%" | <math>3\!</math>
| width="25%" |
+
| width="19%" |
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
 
\text{p}_2^1 & = & \text{p}_{\text{p}_1^1}^1
 
\text{p}_2^1 & = & \text{p}_{\text{p}_1^1}^1
 
\end{array}</math>
 
\end{array}</math>
| width="15%" | <math>\text{p}_\text{p}\!</math>
+
| width="14%" | <math>\text{p}_\text{p}\!</math>
| width="25%" | [[Image:Riff 3 Big.jpg|40px]]
+
| width="19%" | [[Image:Riff 3 Big.jpg|40px]]
| width="25%" | [[Image:Rote 3 Big.jpg|40px]]
+
| width="19%" | [[Image:Rote 3 Big.jpg|40px]]
 +
| width="19%" | <math>(((~))(~))</math>
 
|-
 
|-
 
| <math>4\!</math>
 
| <math>4\!</math>
Line 566: Line 705:
 
| [[Image:Riff 4 Big.jpg|40px]]
 
| [[Image:Riff 4 Big.jpg|40px]]
 
| [[Image:Rote 4 Big.jpg|65px]]
 
| [[Image:Rote 4 Big.jpg|65px]]
 +
| <math>((((~))))</math>
 
|}
 
|}
 
|-
 
|-
Line 571: Line 711:
 
{| cellpadding="12" style="text-align:center; width:100%"
 
{| cellpadding="12" style="text-align:center; width:100%"
 
| width="10%" | <math>5\!</math>
 
| width="10%" | <math>5\!</math>
| width="25%" |
+
| width="19%" |
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
 
\text{p}_3^1
 
\text{p}_3^1
 
& = & \text{p}_{\text{p}_2^1}^1
 
& = & \text{p}_{\text{p}_2^1}^1
\\[12pt]
+
\\[10pt]
 
& = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^1
 
& = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^1
 
\end{array}</math>
 
\end{array}</math>
| width="15%" | <math>\text{p}_{\text{p}_{\text{p}}}\!</math>
+
| width="14%" | <math>\text{p}_{\text{p}_{\text{p}}}\!</math>
| width="25%" | [[Image:Riff 5 Big.jpg|65px]]
+
| width="19%" | [[Image:Riff 5 Big.jpg|65px]]
| width="25%" | [[Image:Rote 5 Big.jpg|40px]]
+
| width="19%" | [[Image:Rote 5 Big.jpg|40px]]
 +
| width="19%" | <math>((((~))(~))(~))</math>
 
|-
 
|-
 
| <math>6\!</math>
 
| <math>6\!</math>
Line 591: Line 732:
 
| [[Image:Riff 6 Big.jpg|65px]]
 
| [[Image:Riff 6 Big.jpg|65px]]
 
| [[Image:Rote 6 Big.jpg|80px]]
 
| [[Image:Rote 6 Big.jpg|80px]]
 +
| <math>((~))(((~))(~))</math>
 
|-
 
|-
 
| <math>7\!</math>
 
| <math>7\!</math>
Line 597: Line 739:
 
\text{p}_4^1
 
\text{p}_4^1
 
& = & \text{p}_{\text{p}_1^2}^1
 
& = & \text{p}_{\text{p}_1^2}^1
\\[12pt]
+
\\[10pt]
 
& = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^1
 
& = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^1
 
\end{array}</math>
 
\end{array}</math>
Line 603: Line 745:
 
| [[Image:Riff 7 Big.jpg|65px]]
 
| [[Image:Riff 7 Big.jpg|65px]]
 
| [[Image:Rote 7 Big.jpg|65px]]
 
| [[Image:Rote 7 Big.jpg|65px]]
 +
| <math>(((((~))))(~))</math>
 
|-
 
|-
 
| <math>8\!</math>
 
| <math>8\!</math>
Line 609: Line 752:
 
\text{p}_1^3
 
\text{p}_1^3
 
& = & \text{p}_1^{\text{p}_2^1}
 
& = & \text{p}_1^{\text{p}_2^1}
\\[12pt]
+
\\[10pt]
 
& = & \text{p}_1^{\text{p}_{\text{p}_1^1}^1}
 
& = & \text{p}_1^{\text{p}_{\text{p}_1^1}^1}
 
\end{array}</math>
 
\end{array}</math>
Line 615: Line 758:
 
| [[Image:Riff 8 Big.jpg|65px]]
 
| [[Image:Riff 8 Big.jpg|65px]]
 
| [[Image:Rote 8 Big.jpg|65px]]
 
| [[Image:Rote 8 Big.jpg|65px]]
 +
| <math>(((((~))(~))))</math>
 
|-
 
|-
 
| <math>9\!</math>
 
| <math>9\!</math>
Line 625: Line 769:
 
| [[Image:Riff 9 Big.jpg|40px]]
 
| [[Image:Riff 9 Big.jpg|40px]]
 
| [[Image:Rote 9 Big.jpg|80px]]
 
| [[Image:Rote 9 Big.jpg|80px]]
 +
| <math>(((~))(((~))))</math>
 
|-
 
|-
 
| <math>16\!</math>
 
| <math>16\!</math>
Line 631: Line 776:
 
\text{p}_1^4
 
\text{p}_1^4
 
& = & \text{p}_1^{\text{p}_1^2}
 
& = & \text{p}_1^{\text{p}_1^2}
\\[12pt]
+
\\[10pt]
 
& = & \text{p}_1^{\text{p}_1^{\text{p}_1^1}}
 
& = & \text{p}_1^{\text{p}_1^{\text{p}_1^1}}
 
\end{array}</math>
 
\end{array}</math>
Line 637: Line 782:
 
| [[Image:Riff 16 Big.jpg|65px]]
 
| [[Image:Riff 16 Big.jpg|65px]]
 
| [[Image:Rote 16 Big.jpg|90px]]
 
| [[Image:Rote 16 Big.jpg|90px]]
 +
| <math>((((((~))))))</math>
 
|}
 
|}
|-
+
|}
 +
 
 +
===A062504===
 +
 
 +
* '''Triangle in which k-th row lists natural number values for the collection of riffs with k nodes.'''
 +
 
 +
* [http://oeis.org/A062504 OEIS Entry for A062504].
 +
 
 +
{| align="center"
 
|
 
|
{| cellpadding="12" style="text-align:center; width:100%"
+
<math>\begin{array}{l|l|r}
| width="10%" | <math>10\!</math>
+
k
| width="25%" |
+
& P_k
<math>\begin{array}{lll}
+
= \{ n : \operatorname{riff}(n) ~\text{has}~ k ~\text{nodes} \}
\text{p}_1^1 \text{p}_3^1
+
= \{ n : \operatorname{rote}(n) ~\text{has}~ 2k + 1 ~\text{nodes} \}
& = & \text{p}_1^1 \text{p}_{\text{p}_2^1}^1
+
& |P_k|
\\[12pt]
+
\\[10pt]
& = & \text{p}_1^1 \text{p}_{\text{p}_{\text{p}_1^1}^1}^1
+
0 & \{ 1 \} & 1
 +
\\
 +
1 & \{ 2 \} & 1
 +
\\
 +
2 & \{ 3, 4 \} & 2
 +
\\
 +
3 & \{ 5, 6, 7, 8, 9, 16 \} & 6
 +
\\
 +
4 & \{ 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536 \} & 20
 
\end{array}</math>
 
\end{array}</math>
| width="15%" | <math>\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math>
+
|}
| width="25%" | [[Image:Riff 10 Big.jpg|90px]]
+
 
| width="25%" | [[Image:Rote 10 Big.jpg|80px]]
+
{| align="center" border="1" width="90%"
 +
|+ style="height:25px" | <math>\text{Prime Factorizations, Riffs, and Rotes}\!</math>
 +
|- style="height:50px; background:#f0f0ff"
 +
|
 +
{| cellpadding="12" style="background:#f0f0ff; text-align:center; width:100%"
 +
| width="10%" | <math>\text{Integer}\!</math>
 +
| width="25%" | <math>\text{Factorization}\!</math>
 +
| width="15%" | <math>\text{Notation}\!</math>
 +
| width="25%" | <math>\text{Riff Digraph}\!</math>
 +
| width="25%" | <math>\text{Rote Graph}\!</math>
 +
|}
 
|-
 
|-
| <math>11\!</math>
 
 
|
 
|
<math>\begin{array}{lll}
+
{| cellpadding="12" style="text-align:center; width:100%"
\text{p}_5^1
+
| width="10%" | <math>1\!</math>
& = & \text{p}_{\text{p}_3^1}^1
+
| width="25%" | <math>1\!</math>
\\[12pt]
+
| width="15%" | &nbsp;
& = & \text{p}_{\text{p}_{\text{p}_2^1}^1}^1
+
| width="25%" | &nbsp;
\\[12pt]
+
| width="25%" | [[Image:Rote 1 Big.jpg|20px]]
& = & \text{p}_{\text{p}_{\text{p}_{\text{p}_1^1}^1}^1}^1
+
|}
\end{array}</math>
 
| <math>\text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math>
 
| [[Image:Riff 11 Big.jpg|90px]]
 
| [[Image:Rote 11 Big.jpg|40px]]
 
 
|-
 
|-
| <math>12\!</math>
 
 
|
 
|
<math>\begin{array}{lll}
+
{| cellpadding="12" style="text-align:center; width:100%"
\text{p}_1^2 \text{p}_2^1
+
| width="10%" | <math>2\!</math>
& = & \text{p}_1^{\text{p}_1^1} \text{p}_{\text{p}_1^1}^1
+
| width="25%" | <math>\text{p}_1^1\!</math>
\end{array}</math>
+
| width="15%" | <math>\text{p}\!</math>
| <math>\text{p}^{\text{p}} \text{p}_{\text{p}}\!</math>
+
| width="25%" | [[Image:Riff 2 Big.jpg|20px]]
| [[Image:Riff 12 Big.jpg|65px]]
+
| width="25%" | [[Image:Rote 2 Big.jpg|40px]]
| [[Image:Rote 12 Big.jpg|105px]]
+
|}
 
|-
 
|-
| <math>13\!</math>
 
 
|
 
|
 +
{| cellpadding="12" style="text-align:center; width:100%"
 +
| width="10%" | <math>3\!</math>
 +
| width="25%" |
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_6^1
+
\text{p}_2^1 & = & \text{p}_{\text{p}_1^1}^1
& = & \text{p}_{\text{p}_1^1 \text{p}_2^1}^1
 
\\[12pt]
 
& = & \text{p}_{\text{p}_1^1 \text{p}_{\text{p}_1^1}^1}^1
 
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}_{\text{p} \text{p}_{\text{p}}}\!</math>
+
| width="15%" | <math>\text{p}_\text{p}\!</math>
| [[Image:Riff 13 Big.jpg|65px]]
+
| width="25%" | [[Image:Riff 3 Big.jpg|40px]]
| [[Image:Rote 13 Big.jpg|80px]]
+
| width="25%" | [[Image:Rote 3 Big.jpg|40px]]
 
|-
 
|-
| <math>14\!</math>
+
| <math>4\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_1^1 \text{p}_4^1
+
\text{p}_1^2 & = & \text{p}_1^{\text{p}_1^1}
& = & \text{p}_1^1 \text{p}_{\text{p}_1^2}^1
+
\end{array}</math>
 +
| <math>\text{p}^\text{p}\!</math>
 +
| [[Image:Riff 4 Big.jpg|40px]]
 +
| [[Image:Rote 4 Big.jpg|65px]]
 +
|}
 +
|-
 +
|
 +
{| cellpadding="12" style="text-align:center; width:100%"
 +
| width="10%" | <math>5\!</math>
 +
| width="25%" |
 +
<math>\begin{array}{lll}
 +
\text{p}_3^1
 +
& = & \text{p}_{\text{p}_2^1}^1
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_1^1 \text{p}_{\text{p}_1^{\text{p}_1^1}}^1
+
& = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^1
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p} \text{p}_{\text{p}^{\text{p}}}\!</math>
+
| width="15%" | <math>\text{p}_{\text{p}_{\text{p}}}\!</math>
| [[Image:Riff 14 Big.jpg|90px]]
+
| width="25%" | [[Image:Riff 5 Big.jpg|65px]]
| [[Image:Rote 14 Big.jpg|105px]]
+
| width="25%" | [[Image:Rote 5 Big.jpg|40px]]
 
|-
 
|-
| <math>17\!</math>
+
| <math>6\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_7^1
+
\text{p}_1^1 \text{p}_2^1
& = & \text{p}_{\text{p}_4^1}^1
+
& = & \text{p}_1^1 \text{p}_{\text{p}_1^1}^1
\\[12pt]
 
& = & \text{p}_{\text{p}_{\text{p}_1^2}^1}^1
 
\\[12pt]
 
& = & \text{p}_{\text{p}_{\text{p}_1^{\text{p}_1^1}}^1}^1
 
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}_{\text{p}_{\text{p}^{\text{p}}}}\!</math>
+
| <math>\text{p} \text{p}_{\text{p}}\!</math>
| [[Image:Riff 17 Big.jpg|90px]]
+
| [[Image:Riff 6 Big.jpg|65px]]
| [[Image:Rote 17 Big.jpg|65px]]
+
| [[Image:Rote 6 Big.jpg|80px]]
 
|-
 
|-
| <math>18\!</math>
+
| <math>7\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_1^1 \text{p}_2^2
+
\text{p}_4^1
& = & \text{p}_1^1 \text{p}_{\text{p}_1^1}^{\text{p}_1^1}
+
& = & \text{p}_{\text{p}_1^2}^1
 +
\\[12pt]
 +
& = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^1
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p} \text{p}_{\text{p}}^{\text{p}}\!</math>
+
| <math>\text{p}_{\text{p}^{\text{p}}}\!</math>
| [[Image:Riff 18 Big.jpg|65px]]
+
| [[Image:Riff 7 Big.jpg|65px]]
| [[Image:Rote 18 Big.jpg|120px]]
+
| [[Image:Rote 7 Big.jpg|65px]]
 
|-
 
|-
| <math>19\!</math>
+
| <math>8\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_8^1
+
\text{p}_1^3
& = & \text{p}_{\text{p}_1^3}^1
+
& = & \text{p}_1^{\text{p}_2^1}
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_{\text{p}_1^{\text{p}_2^1}}^1
+
& = & \text{p}_1^{\text{p}_{\text{p}_1^1}^1}
\\[12pt]
 
& = & \text{p}_{\text{p}_1^{\text{p}_{\text{p}_1^1}^1}}^1
 
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}_{\text{p}^{\text{p}_{\text{p}}}}\!</math>
+
| <math>\text{p}^{\text{p}_{\text{p}}}\!</math>
| [[Image:Riff 19 Big.jpg|90px]]
+
| [[Image:Riff 8 Big.jpg|65px]]
| [[Image:Rote 19 Big.jpg|65px]]
+
| [[Image:Rote 8 Big.jpg|65px]]
 
|-
 
|-
| <math>23\!</math>
+
| <math>9\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_9^1
+
\text{p}_2^2
& = & \text{p}_{\text{p}_2^2}^1
+
& = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1}
\\[12pt]
 
& = & \text{p}_{\text{p}_{\text{p}_1^1}^{\text{p}_1^1}}^1
 
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}_{\text{p}_{\text{p}}^{\text{p}}}\!</math>
+
| <math>\text{p}_\text{p}^\text{p}\!</math>
| [[Image:Riff 23 Big.jpg|65px]]
+
| [[Image:Riff 9 Big.jpg|40px]]
| [[Image:Rote 23 Big.jpg|80px]]
+
| [[Image:Rote 9 Big.jpg|80px]]
 
|-
 
|-
| <math>25\!</math>
+
| <math>16\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_3^2
+
\text{p}_1^4
& = & \text{p}_{\text{p}_2^1}^{\text{p}_1^1}
+
& = & \text{p}_1^{\text{p}_1^2}
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^{\text{p}_1^1}
+
& = & \text{p}_1^{\text{p}_1^{\text{p}_1^1}}
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}_{\text{p}_{\text{p}}}^{\text{p}}\!</math>
+
| <math>\text{p}^{\text{p}^{\text{p}}}\!</math>
| [[Image:Riff 25 Big.jpg|65px]]
+
| [[Image:Riff 16 Big.jpg|65px]]
| [[Image:Rote 25 Big.jpg|80px]]
+
| [[Image:Rote 16 Big.jpg|90px]]
 +
|}
 
|-
 
|-
| <math>27\!</math>
 
 
|
 
|
 +
{| cellpadding="12" style="text-align:center; width:100%"
 +
| width="10%" | <math>10\!</math>
 +
| width="25%" |
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_2^3
+
\text{p}_1^1 \text{p}_3^1
& = & \text{p}_{\text{p}_1^1}^{\text{p}_2^1}
+
& = & \text{p}_1^1 \text{p}_{\text{p}_2^1}^1
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_{\text{p}_1^1}^{\text{p}_{\text{p}_1^1}^1}
+
& = & \text{p}_1^1 \text{p}_{\text{p}_{\text{p}_1^1}^1}^1
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}_{\text{p}}^{\text{p}_{\text{p}}}\!</math>
+
| width="15%" | <math>\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math>
| [[Image:Riff 27 Big.jpg|65px]]
+
| width="25%" | [[Image:Riff 10 Big.jpg|90px]]
| [[Image:Rote 27 Big.jpg|80px]]
+
| width="25%" | [[Image:Rote 10 Big.jpg|80px]]
 
|-
 
|-
| <math>32\!</math>
+
| <math>11\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_1^5
+
\text{p}_5^1
& = & \text{p}_1^{\text{p}_3^1}
+
& = & \text{p}_{\text{p}_3^1}^1
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_1^{\text{p}_{\text{p}_2^1}^1}
+
& = & \text{p}_{\text{p}_{\text{p}_2^1}^1}^1
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_1^{\text{p}_{\text{p}_{\text{p}_1^1}^1}^1}
+
& = & \text{p}_{\text{p}_{\text{p}_{\text{p}_1^1}^1}^1}^1
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}^{\text{p}_{\text{p}_{\text{p}}}}\!</math>
+
| <math>\text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math>
| [[Image:Riff 32 Big.jpg|90px]]
+
| [[Image:Riff 11 Big.jpg|90px]]
| [[Image:Rote 32 Big.jpg|65px]]
+
| [[Image:Rote 11 Big.jpg|40px]]
 
|-
 
|-
| <math>49\!</math>
+
| <math>12\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_4^2
+
\text{p}_1^2 \text{p}_2^1
& = & \text{p}_{\text{p}_1^2}^{\text{p}_1^1}
+
& = & \text{p}_1^{\text{p}_1^1} \text{p}_{\text{p}_1^1}^1
\\[12pt]
 
& = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^{\text{p}_1^1}
 
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}_{\text{p}^{\text{p}}}^{\text{p}}\!</math>
+
| <math>\text{p}^{\text{p}} \text{p}_{\text{p}}\!</math>
| [[Image:Riff 49 Big.jpg|65px]]
+
| [[Image:Riff 12 Big.jpg|65px]]
| [[Image:Rote 49 Big.jpg|80px]]
+
| [[Image:Rote 12 Big.jpg|105px]]
 
|-
 
|-
| <math>53\!</math>
+
| <math>13\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_{16}^1
+
\text{p}_6^1
& = & \text{p}_{\text{p}_1^4}^1
+
& = & \text{p}_{\text{p}_1^1 \text{p}_2^1}^1
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_{\text{p}_1^{\text{p}_1^2}}^1
+
& = & \text{p}_{\text{p}_1^1 \text{p}_{\text{p}_1^1}^1}^1
\\[12pt]
 
& = & \text{p}_{\text{p}_1^{\text{p}_1^{\text{p}_1^1}}}^1
 
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}_{\text{p}^{\text{p}^{\text{p}}}}\!</math>
+
| <math>\text{p}_{\text{p} \text{p}_{\text{p}}}\!</math>
| [[Image:Riff 53 Big.jpg|90px]]
+
| [[Image:Riff 13 Big.jpg|65px]]
| [[Image:Rote 53 Big.jpg|90px]]
+
| [[Image:Rote 13 Big.jpg|80px]]
 
|-
 
|-
| <math>64\!</math>
+
| <math>14\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_1^6
+
\text{p}_1^1 \text{p}_4^1
& = & \text{p}_1^{\text{p}_1^1 \text{p}_2^1}
+
& = & \text{p}_1^1 \text{p}_{\text{p}_1^2}^1
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_1^{\text{p}_1^1 \text{p}_{\text{p}_1^1}^1}
+
& = & \text{p}_1^1 \text{p}_{\text{p}_1^{\text{p}_1^1}}^1
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}^{\text{p} \text{p}_{\text{p}}}\!</math>
+
| <math>\text{p} \text{p}_{\text{p}^{\text{p}}}\!</math>
| [[Image:Riff 64 Big.jpg|65px]]
+
| [[Image:Riff 14 Big.jpg|90px]]
| [[Image:Rote 64 Big.jpg|105px]]
+
| [[Image:Rote 14 Big.jpg|105px]]
 
|-
 
|-
| <math>81\!</math>
+
| <math>17\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_2^4
+
\text{p}_7^1
& = & \text{p}_{\text{p}_1^1}^{\text{p}_1^2}
+
& = & \text{p}_{\text{p}_4^1}^1
 +
\\[12pt]
 +
& = & \text{p}_{\text{p}_{\text{p}_1^2}^1}^1
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_{\text{p}_1^1}^{\text{p}_1^{\text{p}_1^1}}
+
& = & \text{p}_{\text{p}_{\text{p}_1^{\text{p}_1^1}}^1}^1
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}_{\text{p}}^{\text{p}^{\text{p}}}\!</math>
+
| <math>\text{p}_{\text{p}_{\text{p}^{\text{p}}}}\!</math>
| [[Image:Riff 81 Big.jpg|65px]]
+
| [[Image:Riff 17 Big.jpg|90px]]
| [[Image:Rote 81 Big.jpg|105px]]
+
| [[Image:Rote 17 Big.jpg|65px]]
 
|-
 
|-
| <math>128\!</math>
+
| <math>18\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_1^7
+
\text{p}_1^1 \text{p}_2^2
& = & \text{p}_1^{\text{p}_4^1}
+
& = & \text{p}_1^1 \text{p}_{\text{p}_1^1}^{\text{p}_1^1}
\\[12pt]
 
& = & \text{p}_1^{\text{p}_{\text{p}_1^2}^1}
 
\\[12pt]
 
& = & \text{p}_1^{\text{p}_{\text{p}_1^{\text{p}_1^1}}^1}
 
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}^{\text{p}_{\text{p}^{\text{p}}}}\!</math>
+
| <math>\text{p} \text{p}_{\text{p}}^{\text{p}}\!</math>
| [[Image:Riff 128 Big.jpg|90px]]
+
| [[Image:Riff 18 Big.jpg|65px]]
| [[Image:Rote 128 Big.jpg|90px]]
+
| [[Image:Rote 18 Big.jpg|120px]]
 
|-
 
|-
| <math>256\!</math>
+
| <math>19\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_1^8
+
\text{p}_8^1
& = & \text{p}_1^{\text{p}_1^3}
+
& = & \text{p}_{\text{p}_1^3}^1
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_1^{\text{p}_1^{\text{p}_2^1}}
+
& = & \text{p}_{\text{p}_1^{\text{p}_2^1}}^1
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_1^{\text{p}_1^{\text{p}_{\text{p}_1^1}^1}}
+
& = & \text{p}_{\text{p}_1^{\text{p}_{\text{p}_1^1}^1}}^1
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}^{\text{p}^{\text{p}_{\text{p}}}}\!</math>
+
| <math>\text{p}_{\text{p}^{\text{p}_{\text{p}}}}\!</math>
| [[Image:Riff 256 Big.jpg|90px]]
+
| [[Image:Riff 19 Big.jpg|90px]]
| [[Image:Rote 256 Big.jpg|90px]]
+
| [[Image:Rote 19 Big.jpg|65px]]
 
|-
 
|-
| <math>512\!</math>
+
| <math>23\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_1^9
+
\text{p}_9^1
& = & \text{p}_1^{\text{p}_2^2}
+
& = & \text{p}_{\text{p}_2^2}^1
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_1^{\text{p}_{\text{p}_1^1}^{\text{p}_1^1}}
+
& = & \text{p}_{\text{p}_{\text{p}_1^1}^{\text{p}_1^1}}^1
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}^{\text{p}_{\text{p}}^{\text{p}}}\!</math>
+
| <math>\text{p}_{\text{p}_{\text{p}}^{\text{p}}}\!</math>
| [[Image:Riff 512 Big.jpg|65px]]
+
| [[Image:Riff 23 Big.jpg|65px]]
| [[Image:Rote 512 Big.jpg|105px]]
+
| [[Image:Rote 23 Big.jpg|80px]]
 
|-
 
|-
| <math>65536\!</math>
+
| <math>25\!</math>
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
\text{p}_1^{16}
+
\text{p}_3^2
& = & \text{p}_1^{\text{p}_1^4}
+
& = & \text{p}_{\text{p}_2^1}^{\text{p}_1^1}
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_1^{\text{p}_1^{\text{p}_1^2}}
+
& = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^{\text{p}_1^1}
 +
\end{array}</math>
 +
| <math>\text{p}_{\text{p}_{\text{p}}}^{\text{p}}\!</math>
 +
| [[Image:Riff 25 Big.jpg|65px]]
 +
| [[Image:Rote 25 Big.jpg|80px]]
 +
|-
 +
| <math>27\!</math>
 +
|
 +
<math>\begin{array}{lll}
 +
\text{p}_2^3
 +
& = & \text{p}_{\text{p}_1^1}^{\text{p}_2^1}
 
\\[12pt]
 
\\[12pt]
& = & \text{p}_1^{\text{p}_1^{\text{p}_1^{\text{p}_1^1}}}
+
& = & \text{p}_{\text{p}_1^1}^{\text{p}_{\text{p}_1^1}^1}
 
\end{array}</math>
 
\end{array}</math>
| <math>\text{p}^{\text{p}^{\text{p}^{\text{p}}}}\!</math>
+
| <math>\text{p}_{\text{p}}^{\text{p}_{\text{p}}}\!</math>
| [[Image:Riff 65536 Big.jpg|90px]]
+
| [[Image:Riff 27 Big.jpg|65px]]
| [[Image:Rote 65536 Big.jpg|115px]]
+
| [[Image:Rote 27 Big.jpg|80px]]
|}
+
|-
|}
+
| <math>32\!</math>
 
 
===A061396===
 
 
 
* '''Number of "rooted index-functional forests" (Riffs) on n nodes.'''
 
 
 
* '''Number of "rooted odd trees with only exponent symmetries" (Rotes) on 2n+1 nodes.'''
 
 
 
* [http://oeis.org/wiki/A061396 OEIS Wiki Entry for A061396].
 
 
 
===A062504===
 
 
 
* '''Triangle in which k-th row lists natural number values for the collection of riffs with k nodes.'''
 
 
 
* [http://oeis.org/wiki/A062504 OEIS Wiki Entry for A062504].
 
 
 
{| align="center"
 
 
|
 
|
<math>\begin{array}{l|l|r}
+
<math>\begin{array}{lll}
k
+
\text{p}_1^5
& P_k
+
& = & \text{p}_1^{\text{p}_3^1}
= \{ n : \operatorname{riff}(n) ~\text{has}~ k ~\text{nodes} \}
+
\\[12pt]
= \{ n : \operatorname{rote}(n) ~\text{has}~ 2k + 1 ~\text{nodes} \}
+
& = & \text{p}_1^{\text{p}_{\text{p}_2^1}^1}
& |P_k|
+
\\[12pt]
\\[10pt]
+
& = & \text{p}_1^{\text{p}_{\text{p}_{\text{p}_1^1}^1}^1}
0 & \{ 1 \} & 1
 
\\
 
1 & \{ 2 \} & 1
 
\\
 
2 & \{ 3, 4 \} & 2
 
\\
 
3 & \{ 5, 6, 7, 8, 9, 16 \} & 6
 
\\
 
4 & \{ 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536 \} & 20
 
 
\end{array}</math>
 
\end{array}</math>
|}
+
| <math>\text{p}^{\text{p}_{\text{p}_{\text{p}}}}\!</math>
 
+
| [[Image:Riff 32 Big.jpg|90px]]
===A062537===
+
| [[Image:Rote 32 Big.jpg|65px]]
 
+
|-
* '''Nodes in riff (rooted index-functional forest) for n.'''
+
| <math>49\!</math>
 
+
|
* [http://oeis.org/wiki/A062537 OEIS Wiki Entry for A062537].
+
<math>\begin{array}{lll}
 
+
\text{p}_4^2
{| align="center" border="1" cellpadding="10"
+
& = & \text{p}_{\text{p}_1^2}^{\text{p}_1^1}
|+ style="height:25px" | <math>a(n) = \text{Number of Nodes in the Riff of}~ n</math>
+
\\[12pt]
| valign="bottom" |
+
& = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^{\text{p}_1^1}
<p>&nbsp;</p><br>
+
\end{array}</math>
<p><math>1\!</math></p><br>
+
| <math>\text{p}_{\text{p}^{\text{p}}}^{\text{p}}\!</math>
<p><math>a(1) ~=~ 0</math></p>
+
| [[Image:Riff 49 Big.jpg|65px]]
| valign="bottom" |
+
| [[Image:Rote 49 Big.jpg|80px]]
<p>[[Image:Riff 2 Big.jpg|20px]]</p><br>
+
|-
<p><math>\text{p}\!</math></p><br>
+
| <math>53\!</math>
<p><math>a(2) ~=~ 1</math></p>
+
|
| valign="bottom" |
+
<math>\begin{array}{lll}
<p>[[Image:Riff 3 Big.jpg|40px]]</p><br>
+
\text{p}_{16}^1
<p><math>\text{p}_\text{p}\!</math></p><br>
+
& = & \text{p}_{\text{p}_1^4}^1
<p><math>a(3) ~=~ 2</math></p>
+
\\[12pt]
| valign="bottom" |
+
& = & \text{p}_{\text{p}_1^{\text{p}_1^2}}^1
<p>[[Image:Riff 4 Big.jpg|40px]]</p><br>
+
\\[12pt]
<p><math>\text{p}^\text{p}\!</math></p><br>
+
& = & \text{p}_{\text{p}_1^{\text{p}_1^{\text{p}_1^1}}}^1
<p><math>a(4) ~=~ 2</math></p>
+
\end{array}</math>
| valign="bottom" |
+
| <math>\text{p}_{\text{p}^{\text{p}^{\text{p}}}}\!</math>
<p>[[Image:Riff 5 Big.jpg|65px]]</p><br>
+
| [[Image:Riff 53 Big.jpg|90px]]
<p><math>\text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
+
| [[Image:Rote 53 Big.jpg|90px]]
<p><math>a(5) ~=~ 3</math></p>
 
 
|-
 
|-
| valign="bottom" |
+
| <math>64\!</math>
<p>[[Image:Riff 6 Big.jpg|65px]]</p><br>
+
|
<p><math>\text{p} \text{p}_{\text{p}}\!</math></p><br>
+
<math>\begin{array}{lll}
<p><math>a(6) ~=~ 3</math></p>
+
\text{p}_1^6
| valign="bottom" |
+
& = & \text{p}_1^{\text{p}_1^1 \text{p}_2^1}
<p>[[Image:Riff 7 Big.jpg|65px]]</p><br>
+
\\[12pt]
<p><math>\text{p}_{\text{p}^{\text{p}}}\!</math></p><br>
+
& = & \text{p}_1^{\text{p}_1^1 \text{p}_{\text{p}_1^1}^1}
<p><math>a(7) ~=~ 3</math></p>
+
\end{array}</math>
| valign="bottom" |
+
| <math>\text{p}^{\text{p} \text{p}_{\text{p}}}\!</math>
<p>[[Image:Riff 8 Big.jpg|65px]]</p><br>
+
| [[Image:Riff 64 Big.jpg|65px]]
<p><math>\text{p}^{\text{p}_{\text{p}}}\!</math></p><br>
+
| [[Image:Rote 64 Big.jpg|105px]]
<p><math>a(8) ~=~ 3</math></p>
 
| valign="bottom" |
 
<p>[[Image:Riff 9 Big.jpg|40px]]</p><br>
 
<p><math>\text{p}_\text{p}^\text{p}\!</math></p><br>
 
<p><math>a(9) ~=~ 3</math></p>
 
| valign="bottom" |
 
<p>[[Image:Riff 10 Big.jpg|90px]]</p><br>
 
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
 
<p><math>a(10) ~=~ 4</math></p>
 
 
|-
 
|-
| valign="bottom" |
+
| <math>81\!</math>
<p>[[Image:Riff 11 Big.jpg|90px]]</p><br>
+
|
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}}}}\!</math></p><br>
+
<math>\begin{array}{lll}
<p><math>a(11) ~=~ 4</math></p>
+
\text{p}_2^4
| valign="bottom" |
+
& = & \text{p}_{\text{p}_1^1}^{\text{p}_1^2}
<p>[[Image:Riff 12 Big.jpg|65px]]</p><br>
+
\\[12pt]
<p><math>\text{p}^\text{p} \text{p}_\text{p}\!</math></p><br>
+
& = & \text{p}_{\text{p}_1^1}^{\text{p}_1^{\text{p}_1^1}}
<p><math>a(12) ~=~ 4</math></p>
+
\end{array}</math>
| valign="bottom" |
+
| <math>\text{p}_{\text{p}}^{\text{p}^{\text{p}}}\!</math>
<p>[[Image:Riff 13 Big.jpg|65px]]</p><br>
+
| [[Image:Riff 81 Big.jpg|65px]]
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}}}\!</math></p><br>
+
| [[Image:Rote 81 Big.jpg|105px]]
<p><math>a(13) ~=~ 4</math></p>
+
|-
| valign="bottom" |
+
| <math>128\!</math>
<p>[[Image:Riff 14 Big.jpg|90px]]</p><br>
+
|
<p><math>\text{p} \text{p}_{\text{p}^{\text{p}}}\!</math></p><br>
+
<math>\begin{array}{lll}
<p><math>a(14) ~=~ 4</math></p>
+
\text{p}_1^7
| valign="bottom" |
+
& = & \text{p}_1^{\text{p}_4^1}
<p>[[Image:Riff 15 Big.jpg|90px]]</p><br>
+
\\[12pt]
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
+
& = & \text{p}_1^{\text{p}_{\text{p}_1^2}^1}
<p><math>a(15) ~=~ 5</math></p>
+
\\[12pt]
 +
& = & \text{p}_1^{\text{p}_{\text{p}_1^{\text{p}_1^1}}^1}
 +
\end{array}</math>
 +
| <math>\text{p}^{\text{p}_{\text{p}^{\text{p}}}}\!</math>
 +
| [[Image:Riff 128 Big.jpg|90px]]
 +
| [[Image:Rote 128 Big.jpg|90px]]
 
|-
 
|-
| valign="bottom" |
+
| <math>256\!</math>
<p>[[Image:Riff 16 Big.jpg|65px]]</p><br>
+
|
<p><math>\text{p}^{\text{p}^{\text{p}}}\!</math></p><br>
+
<math>\begin{array}{lll}
<p><math>a(16) ~=~ 3</math></p>
+
\text{p}_1^8
| valign="bottom" |
+
& = & \text{p}_1^{\text{p}_1^3}
<p>[[Image:Riff 17 Big.jpg|90px]]</p><br>
+
\\[12pt]
<p><math>\text{p}_{\text{p}_{\text{p}^{\text{p}}}}\!</math></p><br>
+
& = & \text{p}_1^{\text{p}_1^{\text{p}_2^1}}
<p><math>a(17) ~=~ 4</math></p>
+
\\[12pt]
| valign="bottom" |
+
& = & \text{p}_1^{\text{p}_1^{\text{p}_{\text{p}_1^1}^1}}
<p>[[Image:Riff 18 Big.jpg|65px]]</p><br>
+
\end{array}</math>
<p><math>\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
+
| <math>\text{p}^{\text{p}^{\text{p}_{\text{p}}}}\!</math>
<p><math>a(18) ~=~ 4</math></p>
+
| [[Image:Riff 256 Big.jpg|90px]]
| valign="bottom" |
+
| [[Image:Rote 256 Big.jpg|90px]]
<p>[[Image:Riff 19 Big.jpg|90px]]</p><br>
 
<p><math>\text{p}_{\text{p}^{\text{p}_{\text{p}}}}\!</math></p><br>
 
<p><math>a(19) ~=~ 4</math></p>
 
| valign="bottom" |
 
<p>[[Image:Riff 20 Big.jpg|90px]]</p><br>
 
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
 
<p><math>a(20) ~=~ 5</math></p>
 
 
|-
 
|-
 +
| <math>512\!</math>
 +
|
 +
<math>\begin{array}{lll}
 +
\text{p}_1^9
 +
& = & \text{p}_1^{\text{p}_2^2}
 +
\\[12pt]
 +
& = & \text{p}_1^{\text{p}_{\text{p}_1^1}^{\text{p}_1^1}}
 +
\end{array}</math>
 +
| <math>\text{p}^{\text{p}_{\text{p}}^{\text{p}}}\!</math>
 +
| [[Image:Riff 512 Big.jpg|65px]]
 +
| [[Image:Rote 512 Big.jpg|105px]]
 +
|-
 +
| <math>65536\!</math>
 +
|
 +
<math>\begin{array}{lll}
 +
\text{p}_1^{16}
 +
& = & \text{p}_1^{\text{p}_1^4}
 +
\\[12pt]
 +
& = & \text{p}_1^{\text{p}_1^{\text{p}_1^2}}
 +
\\[12pt]
 +
& = & \text{p}_1^{\text{p}_1^{\text{p}_1^{\text{p}_1^1}}}
 +
\end{array}</math>
 +
| <math>\text{p}^{\text{p}^{\text{p}^{\text{p}}}}\!</math>
 +
| [[Image:Riff 65536 Big.jpg|90px]]
 +
| [[Image:Rote 65536 Big.jpg|115px]]
 +
|}
 +
|}
 +
 +
===A062537===
 +
 +
* '''Nodes in riff (rooted index-functional forest) for n.'''
 +
 +
* [http://oeis.org/A062537 OEIS Entry for A062537].
 +
 +
{| align="center" border="1" cellpadding="10"
 +
|+ style="height:25px" | <math>a(n) = \text{Number of Nodes in the Riff of}~ n</math>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 21 Big.jpg|90px]]</p><br>
+
<p>&nbsp;</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>1\!</math></p><br>
<p><math>a(21) ~=~ 5</math></p>
+
<p><math>a(1) ~=~ 0</math></p>
| valign="bottom" |
 
<p>[[Image:Riff 22 Big.jpg|115px]]</p><br>
 
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 
<p><math>a(22) ~=~ 5</math></p>
 
| valign="bottom" |
 
<p>[[Image:Riff 23 Big.jpg|65px]]</p><br>
 
<p><math>\text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
 
<p><math>a(23) ~=~ 4</math></p>
 
| valign="bottom" |
 
<p>[[Image:Riff 24 Big.jpg|115px]]</p><br>
 
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!</math></p><br>
 
<p><math>a(24) ~=~ 5</math></p>
 
| valign="bottom" |
 
<p>[[Image:Riff 25 Big.jpg|65px]]</p><br>
 
<p><math>\text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
 
<p><math>a(25) ~=~ 4</math></p>
 
|-
 
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 26 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 2 Big.jpg|20px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}\!</math></p><br>
<p><math>a(26) ~=~ 5</math></p>
+
<p><math>a(2) ~=~ 1</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 27 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 3 Big.jpg|40px]]</p><br>
<p><math>\text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}\!</math></p><br>
<p><math>a(27) ~=~ 4</math></p>
+
<p><math>a(3) ~=~ 2</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 28 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 4 Big.jpg|40px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p}\!</math></p><br>
<p><math>a(28) ~=~ 5</math></p>
+
<p><math>a(4) ~=~ 2</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 29 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 5 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
<p><math>a(29) ~=~ 5</math></p>
+
<p><math>a(5) ~=~ 3</math></p>
| valign="bottom" |
 
<p>[[Image:Riff 30 Big.jpg|115px]]</p><br>
 
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 
<p><math>a(30) ~=~ 6</math></p>
 
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 31 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 6 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}}\!</math></p><br>
<p><math>a(31) ~=~ 5</math></p>
+
<p><math>a(6) ~=~ 3</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 32 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 7 Big.jpg|65px]]</p><br>
<p><math>\text{p}^{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^{\text{p}}}\!</math></p><br>
<p><math>a(32) ~=~ 4</math></p>
+
<p><math>a(7) ~=~ 3</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 33 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 8 Big.jpg|65px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_{\text{p}}}\!</math></p><br>
<p><math>a(33) ~=~ 6</math></p>
+
<p><math>a(8) ~=~ 3</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 34 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 9 Big.jpg|40px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}^\text{p}\!</math></p><br>
<p><math>a(34) ~=~ 5</math></p>
+
<p><math>a(9) ~=~ 3</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 35 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 10 Big.jpg|90px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
<p><math>a(35) ~=~ 6</math></p>
+
<p><math>a(10) ~=~ 4</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 36 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 11 Big.jpg|90px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}}}}\!</math></p><br>
<p><math>a(36) ~=~ 5</math></p>
+
<p><math>a(11) ~=~ 4</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 37 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 12 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_\text{p}\!</math></p><br>
<p><math>a(37) ~=~ 5</math></p>
+
<p><math>a(12) ~=~ 4</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 38 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 13 Big.jpg|65px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}}}\!</math></p><br>
<p><math>a(38) ~=~ 5</math></p>
+
<p><math>a(13) ~=~ 4</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 39 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 14 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}^{\text{p}}}\!</math></p><br>
<p><math>a(39) ~=~ 6</math></p>
+
<p><math>a(14) ~=~ 4</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 40 Big.jpg|135px]]</p><br>
+
<p>[[Image:Riff 15 Big.jpg|90px]]</p><br>
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
<p><math>a(40) ~=~ 6</math></p>
+
<p><math>a(15) ~=~ 5</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 41 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 16 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}^{\text{p}}}\!</math></p><br>
<p><math>a(41) ~=~ 5</math></p>
+
<p><math>a(16) ~=~ 3</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 42 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 17 Big.jpg|90px]]</p><br>
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}^{\text{p}}}}\!</math></p><br>
<p><math>a(42) ~=~ 6</math></p>
+
<p><math>a(17) ~=~ 4</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 43 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 18 Big.jpg|65px]]</p><br>
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
<p><math>a(43) ~=~ 5</math></p>
+
<p><math>a(18) ~=~ 4</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 44 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 19 Big.jpg|90px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^{\text{p}_{\text{p}}}}\!</math></p><br>
<p><math>a(44) ~=~ 6</math></p>
+
<p><math>a(19) ~=~ 4</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 45 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 20 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
<p><math>a(45) ~=~ 6</math></p>
+
<p><math>a(20) ~=~ 5</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 46 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 21 Big.jpg|90px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>a(46) ~=~ 5</math></p>
+
<p><math>a(21) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 47 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 22 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>a(47) ~=~ 6</math></p>
+
<p><math>a(22) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 48 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 23 Big.jpg|65px]]</p><br>
<p><math>\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
<p><math>a(48) ~=~ 5</math></p>
+
<p><math>a(23) ~=~ 4</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 49 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 24 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p}^\text{p}}^\text{p}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!</math></p><br>
<p><math>a(49) ~=~ 4</math></p>
+
<p><math>a(24) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 50 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 25 Big.jpg|65px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
<p><math>a(50) ~=~ 5</math></p>
+
<p><math>a(25) ~=~ 4</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 51 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 26 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>a(51) ~=~ 6</math></p>
+
<p><math>a(26) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 52 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 27 Big.jpg|65px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
<p><math>a(52) ~=~ 6</math></p>
+
<p><math>a(27) ~=~ 4</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 53 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 28 Big.jpg|90px]]</p><br>
<p><math>\text{p}_{\text{p}^{\text{p}^\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>a(53) ~=~ 4</math></p>
+
<p><math>a(28) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 54 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 29 Big.jpg|90px]]</p><br>
<p><math>\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>a(54) ~=~ 5</math></p>
+
<p><math>a(29) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 55 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 30 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>a(55) ~=~ 7</math></p>
+
<p><math>a(30) ~=~ 6</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 56 Big.jpg|135px]]</p><br>
+
<p>[[Image:Riff 31 Big.jpg|115px]]</p><br>
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!</math></p><br>
<p><math>a(56) ~=~ 6</math></p>
+
<p><math>a(31) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 57 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 32 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>a(57) ~=~ 6</math></p>
+
<p><math>a(32) ~=~ 4</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 58 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 33 Big.jpg|115px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>a(58) ~=~ 6</math></p>
+
<p><math>a(33) ~=~ 6</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 59 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 34 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
<p><math>a(59) ~=~ 5</math></p>
+
<p><math>a(34) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 60 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 35 Big.jpg|90px]]</p><br>
<p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>a(60) ~=~ 7</math></p>
+
<p><math>a(35) ~=~ 6</math></p>
|}
+
|-
 
 
===A062860===
 
 
 
* '''Smallest j with n nodes in its riff (rooted index-functional forest).'''
 
 
 
* [http://oeis.org/wiki/A062860 OEIS Wiki Entry for A062860].
 
 
 
{| align="center" border="1" cellpadding="10"
 
|+ style="height:25px" | <math>a(n) = \text{Least Integer}~ j ~\text{with}~ n ~\text{Nodes in Its Riff}</math>
 
 
| valign="bottom" |
 
| valign="bottom" |
<p>&nbsp;</p><br>
+
<p>[[Image:Riff 36 Big.jpg|65px]]</p><br>
<p><math>1\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
<p><math>a(0) ~=~ 1</math></p>
+
<p><math>a(36) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 2 Big.jpg|20px]]</p><br>
+
<p>[[Image:Riff 37 Big.jpg|65px]]</p><br>
<p><math>\text{p}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>a(1) ~=~ 2</math></p>
+
<p><math>a(37) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 3 Big.jpg|40px]]</p><br>
+
<p>[[Image:Riff 38 Big.jpg|115px]]</p><br>
<p><math>\text{p}_\text{p}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
<p><math>a(2) ~=~ 3</math></p>
+
<p><math>a(38) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 5 Big.jpg|65px]]</p><br>
+
<p>[[Image:Riff 39 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
<p><math>a(3) ~=~ 5</math></p>
+
<p><math>a(39) ~=~ 6</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 10 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 40 Big.jpg|135px]]</p><br>
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>a(4) ~=~ 10</math></p>
+
<p><math>a(40) ~=~ 6</math></p>
 
|-
 
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 15 Big.jpg|90px]]</p><br>
+
<p>[[Image:Riff 41 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
+
<p><math>\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!</math></p><br>
<p><math>a(5) ~=~ 15</math></p>
+
<p><math>a(41) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 30 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 42 Big.jpg|115px]]</p><br>
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
<p><math>a(6) ~=~ 30</math></p>
+
<p><math>a(42) ~=~ 6</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 43 Big.jpg|90px]]</p><br>
 +
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!</math></p><br>
 +
<p><math>a(43) ~=~ 5</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 55 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 44 Big.jpg|115px]]</p><br>
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
<p><math>a(7) ~=~ 55</math></p>
+
<p><math>a(44) ~=~ 6</math></p>
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 105 Big.jpg|115px]]</p><br>
+
<p>[[Image:Riff 45 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
+
<p><math>\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
<p><math>a(8) ~=~ 105</math></p>
+
<p><math>a(45) ~=~ 6</math></p>
 +
|-
 
| valign="bottom" |
 
| valign="bottom" |
<p>[[Image:Riff 165 Big.jpg|135px]]</p><br>
+
<p>[[Image:Riff 46 Big.jpg|90px]]</p><br>
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
+
<p><math>\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(46) ~=~ 5</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 47 Big.jpg|90px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(47) ~=~ 6</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 48 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!</math></p><br>
 +
<p><math>a(48) ~=~ 5</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 49 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}_{\text{p}^\text{p}}^\text{p}\!</math></p><br>
 +
<p><math>a(49) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 50 Big.jpg|90px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
 +
<p><math>a(50) ~=~ 5</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Riff 51 Big.jpg|115px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
 +
<p><math>a(51) ~=~ 6</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 52 Big.jpg|90px]]</p><br>
 +
<p><math>\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(52) ~=~ 6</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 53 Big.jpg|90px]]</p><br>
 +
<p><math>\text{p}_{\text{p}^{\text{p}^\text{p}}}\!</math></p><br>
 +
<p><math>a(53) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 54 Big.jpg|90px]]</p><br>
 +
<p><math>\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(54) ~=~ 5</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 55 Big.jpg|115px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(55) ~=~ 7</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Riff 56 Big.jpg|135px]]</p><br>
 +
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(56) ~=~ 6</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 57 Big.jpg|115px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(57) ~=~ 6</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 58 Big.jpg|115px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(58) ~=~ 6</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 59 Big.jpg|115px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!</math></p><br>
 +
<p><math>a(59) ~=~ 5</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 60 Big.jpg|115px]]</p><br>
 +
<p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(60) ~=~ 7</math></p>
 +
|}
 +
 
 +
===A062860===
 +
 
 +
* '''Smallest j with n nodes in its riff (rooted index-functional forest).'''
 +
 
 +
* [http://oeis.org/A062860 OEIS Entry for A062860].
 +
 
 +
{| align="center" border="1" cellpadding="10"
 +
|+ style="height:25px" | <math>a(n) = \text{Least Integer}~ j ~\text{with}~ n ~\text{Nodes in Its Riff}</math>
 +
| valign="bottom" |
 +
<p>&nbsp;</p><br>
 +
<p><math>1\!</math></p><br>
 +
<p><math>a(0) ~=~ 1</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 2 Big.jpg|20px]]</p><br>
 +
<p><math>\text{p}\!</math></p><br>
 +
<p><math>a(1) ~=~ 2</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 3 Big.jpg|40px]]</p><br>
 +
<p><math>\text{p}_\text{p}\!</math></p><br>
 +
<p><math>a(2) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 5 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
 +
<p><math>a(3) ~=~ 5</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 10 Big.jpg|90px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
 +
<p><math>a(4) ~=~ 10</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Riff 15 Big.jpg|90px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math></p><br>
 +
<p><math>a(5) ~=~ 15</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 30 Big.jpg|115px]]</p><br>
 +
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(6) ~=~ 30</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 55 Big.jpg|115px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(7) ~=~ 55</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 105 Big.jpg|115px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(8) ~=~ 105</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Riff 165 Big.jpg|135px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 
<p><math>a(9) ~=~ 165</math></p>
 
<p><math>a(9) ~=~ 165</math></p>
 +
|}
 +
 +
===A109301===
 +
 +
* '''a(n) = rhig(n) = rote height in gammas of n, where the "rote" corresponding to a positive integer n is a graph derived from the primes factorization of n, as illustrated in the comments.'''
 +
 +
* [http://oeis.org/A109301 OEIS Entry for A109301].
 +
 +
; Example
 +
 +
: <math>802701 = 9 \cdot 89189 = \text{p}_2^2 \text{p}_{8638}^1</math>
 +
 +
: <math>\text{Writing}~ (\operatorname{prime}(i))^j ~\text{as}~ i\!:\!j, ~\text{we have:}</math>
 +
 +
: <math>\begin{array}{lllll}
 +
802701
 +
& = & 9 \cdot 89189
 +
& = & 2\!:\!2 ~~ 8638\!:\!1
 +
\\
 +
8638
 +
& = & 2 \cdot 7 \cdot 617
 +
& = & 1\!:\!1 ~~ 4\!:\!1 ~~ 113\!:\!1
 +
\\
 +
113
 +
&  &
 +
& = & 30\!:\!1
 +
\\
 +
30
 +
& = & 2 \cdot 3 \cdot 5
 +
& = & 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1
 +
\\
 +
4
 +
&  &
 +
& = & 1\!:\!2
 +
\\
 +
3
 +
&  &
 +
& = & 2\!:\!1
 +
\\
 +
2
 +
&  &
 +
& = & 1\!:\!1
 +
\end{array}</math>
 +
 +
: <math>\text{So the rote of 802701 is the following graph:}\!</math>
 +
 +
:{| border="1" cellpadding="20"
 +
| [[Image:Rote 802701 Big.jpg|330px]]
 +
|}
 +
 +
: <math>\text{By inspection, the rote height of 802701 is 6.}\!</math>
 +
 +
<br>
 +
 +
{| align="center" border="1" cellpadding="6"
 +
|+ style="height:25px" | <math>a(n) = \text{Rote Height of}~ n</math>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 1 Big.jpg|20px]]</p><br>
 +
<p><math>1\!</math></p><br>
 +
<p><math>a(1) ~=~ 0</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 2 Big.jpg|40px]]</p><br>
 +
<p><math>\text{p}\!</math></p><br>
 +
<p><math>a(2) ~=~ 1</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 3 Big.jpg|40px]]</p><br>
 +
<p><math>\text{p}_\text{p}\!</math></p><br>
 +
<p><math>a(3) ~=~ 2</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 4 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}^\text{p}\!</math></p><br>
 +
<p><math>a(4) ~=~ 2</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 5 Big.jpg|40px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(5) ~=~ 3</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 6 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p} \text{p}_\text{p}\!</math></p><br>
 +
<p><math>a(6) ~=~ 2</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 7 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}_{\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(7) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 8 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}^{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(8) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 9 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_\text{p}^\text{p}\!</math></p><br>
 +
<p><math>a(9) ~=~ 2</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 10 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(10) ~=~ 3</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 11 Big.jpg|40px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(11) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 12 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}^\text{p} \text{p}_\text{p}\!</math></p><br>
 +
<p><math>a(12) ~=~ 2</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 13 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(13) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 14 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(14) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 15 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(15) ~=~ 3</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 16 Big.jpg|90px]]</p><br>
 +
<p><math>\text{p}^{\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(16) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 17 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
 +
<p><math>a(17) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 18 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
 +
<p><math>a(18) ~=~ 2</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 19 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(19) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 20 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(20) ~=~ 3</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 21 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(21) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 22 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(22) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 23 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(23) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 24 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!</math></p><br>
 +
<p><math>a(24) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 25 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
 +
<p><math>a(25) ~=~ 3</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 26 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(26) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 27 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(27) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 28 Big.jpg|130px]]</p><br>
 +
<p><math>\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(28) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 29 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(29) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 30 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(30) ~=~ 3</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 31 Big.jpg|40px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!</math></p><br>
 +
<p><math>a(31) ~=~ 5</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 32 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}^{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(32) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 33 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(33) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 34 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
 +
<p><math>a(34) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 35 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(35) ~=~ 3</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 36 Big.jpg|145px]]</p><br>
 +
<p><math>\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!</math></p><br>
 +
<p><math>a(36) ~=~ 2</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 37 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(37) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 38 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(38) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 39 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(39) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 40 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(40) ~=~ 3</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 41 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(41) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 42 Big.jpg|145px]]</p><br>
 +
<p><math>\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(42) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 43 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!</math></p><br>
 +
<p><math>a(43) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 44 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(44) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 45 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(45) ~=~ 3</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 46 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(46) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 47 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(47) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 48 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!</math></p><br>
 +
<p><math>a(48) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 49 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_{\text{p}^\text{p}}^\text{p}\!</math></p><br>
 +
<p><math>a(49) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 50 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!</math></p><br>
 +
<p><math>a(50) ~=~ 3</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 51 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!</math></p><br>
 +
<p><math>a(51) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 52 Big.jpg|145px]]</p><br>
 +
<p><math>\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(52) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 53 Big.jpg|90px]]</p><br>
 +
<p><math>\text{p}_{\text{p}^{\text{p}^\text{p}}}\!</math></p><br>
 +
<p><math>a(53) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 54 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(54) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 55 Big.jpg|80px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(55) ~=~ 4</math></p>
 +
|-
 +
| valign="bottom" |
 +
<p>[[Image:Rote 56 Big.jpg|130px]]</p><br>
 +
<p><math>\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!</math></p><br>
 +
<p><math>a(56) ~=~ 3</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 57 Big.jpg|105px]]</p><br>
 +
<p><math>\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(57) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 58 Big.jpg|120px]]</p><br>
 +
<p><math>\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!</math></p><br>
 +
<p><math>a(58) ~=~ 4</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 59 Big.jpg|65px]]</p><br>
 +
<p><math>\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!</math></p><br>
 +
<p><math>a(59) ~=~ 5</math></p>
 +
| valign="bottom" |
 +
<p>[[Image:Rote 60 Big.jpg|155px]]</p><br>
 +
<p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br>
 +
<p><math>a(60) ~=~ 3</math></p>
 +
|}
 +
 +
==Miscellaneous Examples==
 +
 +
{| align="center" border="1" width="96%"
 +
|+ style="height:24px" | <math>\text{Integers, Riffs, Rotes}\!</math>
 +
|- style="height:50px; background:#f0f0ff"
 +
|
 +
{| cellpadding="12" style="background:#f0f0ff; text-align:center; width:100%"
 +
| width="10%" | <math>\text{Integer}\!</math>
 +
| width="45%" | <math>\text{Riff}\!</math>
 +
| width="45%" | <math>\text{Rote}\!</math>
 +
|}
 +
|-
 +
|
 +
{| cellpadding="12" style="text-align:center; width:100%"
 +
| width="10%" | <math>1\!</math>
 +
| width="45%" | &nbsp;
 +
| width="45%" | [[Image:Rote 1 Big.jpg|15px]]
 +
|-
 +
| <math>2\!</math>
 +
| [[Image:Riff 2 Big.jpg|15px]]
 +
| [[Image:Rote 2 Big.jpg|30px]]
 +
|-
 +
| <math>3\!</math>
 +
| [[Image:Riff 3 Big.jpg|30px]]
 +
| [[Image:Rote 3 Big.jpg|30px]]
 +
|-
 +
| <math>4\!</math>
 +
| [[Image:Riff 4 Big.jpg|30px]]
 +
| [[Image:Rote 4 Big.jpg|48px]]
 +
|-
 +
| <math>360\!</math>
 +
| [[Image:Riff 360 Big.jpg|120px]]
 +
| [[Image:Rote 360 Big.jpg|135px]]
 +
|-
 +
| <math>2010\!</math>
 +
| [[Image:Riff 2010 Big.jpg|138px]]
 +
| [[Image:Rote 2010 Big.jpg|144px]]
 +
|-
 +
| <math>2011\!</math>
 +
| [[Image:Riff 2011 Big.jpg|84px]]
 +
| [[Image:Rote 2011 Big.jpg|120px]]
 +
|-
 +
| <math>2012\!</math>
 +
| [[Image:Riff 2012 Big.jpg|100px]]
 +
| [[Image:Rote 2012 Big.jpg|125px]]
 +
|-
 +
| <math>2500\!</math>
 +
| [[Image:Riff 2500 Big.jpg|66px]]
 +
| [[Image:Rote 2500 Big.jpg|125px]]
 +
|-
 +
| <math>802701\!</math>
 +
| [[Image:Riff 802701 Big.jpg|156px]]
 +
| [[Image:Rote 802701 Big.jpg|245px]]
 +
|-
 +
| <math>123456789\!</math>
 +
| [[Image:Riff 123456789 Big.jpg|162px]]
 +
| [[Image:Rote 123456789 Big.jpg|256px]]
 +
|}
 
|}
 
|}

Latest revision as of 22:00, 30 January 2016

Idea

Let \(\text{p}_i\!\) be the \(i^\text{th}\!\) prime, where the positive integer \(i\!\) is called the index of the prime \(\text{p}_i\!\) and the indices are taken in such a way that \(\text{p}_1 = 2.\!\) Thus the sequence of primes begins as follows:

\(\begin{matrix} \text{p}_1 = 2, & \text{p}_2 = 3, & \text{p}_3 = 5, & \text{p}_4 = 7, & \text{p}_5 = 11, & \text{p}_6 = 13, & \text{p}_7 = 17, & \text{p}_8 = 19, & \ldots \end{matrix}\)

The prime factorization of a positive integer \(n\!\) can be written in the following form:

\(n ~=~ \prod_{k = 1}^{\ell} \text{p}_{i(k)}^{j(k)},\!\)

where \(\text{p}_{i(k)}^{j(k)}\!\) is the \(k^\text{th}\!\) prime power in the factorization and \(\ell\!\) is the number of distinct prime factors dividing \(n.\!\) The factorization of \(1\!\) is defined as \(1\!\) in accord with the convention that an empty product is equal to \(1.\!\)

Let \(I(n)\!\) be the set of indices of primes that divide \(n\!\) and let \(j(i, n)\!\) be the number of times that \(\text{p}_i\!\) divides \(n.\!\) Then the prime factorization of \(n\!\) can be written in the following alternative form:

\(n ~=~ \prod_{i \in I(n)} \text{p}_{i}^{j(i, n)}.\!\)

For example:

\(\begin{matrix} 123456789 & = & 3^2 \cdot 3607 \cdot 3803 & = & \text{p}_2^2 \text{p}_{504}^1 \text{p}_{529}^1. \end{matrix}\)

Each index \(i\!\) and exponent \(j\!\) appearing in the prime factorization of a positive integer \(n\!\) is itself a positive integer, and thus has a prime factorization of its own.

Continuing with the same example, the index \(504\!\) has the factorization \(2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1\!\) and the index \(529\!\) has the factorization \({23}^2 = \text{p}_9^2.\!\) Taking this information together with previously known factorizations allows the following replacements to be made in the expression above:

\(\begin{array}{rcl} 2 & \mapsto & \text{p}_1^1 \'"`UNIQ-MathJax1-QINU`"' '"`UNIQ-MathJax2-QINU`"' '"`UNIQ-MathJax3-QINU`"' '"`UNIQ-MathJax4-QINU`"' :{| border="1" cellpadding="20" | [[Image:Rote 802701 Big.jpg|330px]] |} '"`UNIQ-MathJax5-QINU`"' <br> {| align="center" border="1" cellpadding="6" |+ style="height:25px" | \(a(n) = \text{Rote Height of}~ n\)

Rote 1 Big.jpg


\(1\!\)


\(a(1) ~=~ 0\)

Rote 2 Big.jpg


\(\text{p}\!\)


\(a(2) ~=~ 1\)

Rote 3 Big.jpg


\(\text{p}_\text{p}\!\)


\(a(3) ~=~ 2\)

Rote 4 Big.jpg


\(\text{p}^\text{p}\!\)


\(a(4) ~=~ 2\)

Rote 5 Big.jpg


\(\text{p}_{\text{p}_\text{p}}\!\)


\(a(5) ~=~ 3\)

Rote 6 Big.jpg


\(\text{p} \text{p}_\text{p}\!\)


\(a(6) ~=~ 2\)

Rote 7 Big.jpg


\(\text{p}_{\text{p}^\text{p}}\!\)


\(a(7) ~=~ 3\)

Rote 8 Big.jpg


\(\text{p}^{\text{p}_\text{p}}\!\)


\(a(8) ~=~ 3\)

Rote 9 Big.jpg


\(\text{p}_\text{p}^\text{p}\!\)


\(a(9) ~=~ 2\)

Rote 10 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(10) ~=~ 3\)

Rote 11 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(11) ~=~ 4\)

Rote 12 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p}\!\)


\(a(12) ~=~ 2\)

Rote 13 Big.jpg


\(\text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(13) ~=~ 3\)

Rote 14 Big.jpg


\(\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(14) ~=~ 3\)

Rote 15 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(15) ~=~ 3\)

Rote 16 Big.jpg


\(\text{p}^{\text{p}^\text{p}}\!\)


\(a(16) ~=~ 3\)

Rote 17 Big.jpg


\(\text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(a(17) ~=~ 4\)

Rote 18 Big.jpg


\(\text{p} \text{p}_\text{p}^\text{p}\!\)


\(a(18) ~=~ 2\)

Rote 19 Big.jpg


\(\text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(a(19) ~=~ 4\)

Rote 20 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(20) ~=~ 3\)

Rote 21 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(21) ~=~ 3\)

Rote 22 Big.jpg


\(\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(22) ~=~ 4\)

Rote 23 Big.jpg


\(\text{p}_{\text{p}_\text{p}^\text{p}}\!\)


\(a(23) ~=~ 3\)

Rote 24 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!\)


\(a(24) ~=~ 3\)

Rote 25 Big.jpg


\(\text{p}_{\text{p}_\text{p}}^\text{p}\!\)


\(a(25) ~=~ 3\)

Rote 26 Big.jpg


\(\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(26) ~=~ 3\)

Rote 27 Big.jpg


\(\text{p}_\text{p}^{\text{p}_\text{p}}\!\)


\(a(27) ~=~ 3\)

Rote 28 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(28) ~=~ 3\)

Rote 29 Big.jpg


\(\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(a(29) ~=~ 4\)

Rote 30 Big.jpg


\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(30) ~=~ 3\)

Rote 31 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!\)


\(a(31) ~=~ 5\)

Rote 32 Big.jpg


\(\text{p}^{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(32) ~=~ 4\)

Rote 33 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(33) ~=~ 4\)

Rote 34 Big.jpg


\(\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(a(34) ~=~ 4\)

Rote 35 Big.jpg


\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\)


\(a(35) ~=~ 3\)

Rote 36 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!\)


\(a(36) ~=~ 2\)

Rote 37 Big.jpg


\(\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!\)


\(a(37) ~=~ 3\)

Rote 38 Big.jpg


\(\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(a(38) ~=~ 4\)

Rote 39 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(39) ~=~ 3\)

Rote 40 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!\)


\(a(40) ~=~ 3\)

Rote 41 Big.jpg


\(\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!\)


\(a(41) ~=~ 4\)

Rote 42 Big.jpg


\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(42) ~=~ 3\)

Rote 43 Big.jpg


\(\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!\)


\(a(43) ~=~ 4\)

Rote 44 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(44) ~=~ 4\)

Rote 45 Big.jpg


\(\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(45) ~=~ 3\)

Rote 46 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!\)


\(a(46) ~=~ 3\)

Rote 47 Big.jpg


\(\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(a(47) ~=~ 4\)

Rote 48 Big.jpg


\(\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!\)


\(a(48) ~=~ 3\)

Rote 49 Big.jpg


\(\text{p}_{\text{p}^\text{p}}^\text{p}\!\)


\(a(49) ~=~ 3\)

Rote 50 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!\)


\(a(50) ~=~ 3\)

Rote 51 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(a(51) ~=~ 4\)

Rote 52 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(52) ~=~ 3\)

Rote 53 Big.jpg


\(\text{p}_{\text{p}^{\text{p}^\text{p}}}\!\)


\(a(53) ~=~ 4\)

Rote 54 Big.jpg


\(\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!\)


\(a(54) ~=~ 3\)

Rote 55 Big.jpg


\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(55) ~=~ 4\)

Rote 56 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\)


\(a(56) ~=~ 3\)

Rote 57 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(a(57) ~=~ 4\)

Rote 58 Big.jpg


\(\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(a(58) ~=~ 4\)

Rote 59 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!\)


\(a(59) ~=~ 5\)

Rote 60 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(60) ~=~ 3\)

Miscellaneous Examples

\(\text{Integers, Riffs, Rotes}\!\)
\(\text{Integer}\!\) \(\text{Riff}\!\) \(\text{Rote}\!\)
\(1\!\)   Rote 1 Big.jpg
\(2\!\) Riff 2 Big.jpg Rote 2 Big.jpg
\(3\!\) Riff 3 Big.jpg Rote 3 Big.jpg
\(4\!\) Riff 4 Big.jpg Rote 4 Big.jpg
\(360\!\) 120px 135px
\(2010\!\) Riff 2010 Big.jpg Rote 2010 Big.jpg
\(2011\!\) Riff 2011 Big.jpg Rote 2011 Big.jpg
\(2012\!\) Riff 2012 Big.jpg Rote 2012 Big.jpg
\(2500\!\) Riff 2500 Big.jpg Rote 2500 Big.jpg
\(802701\!\) Riff 802701 Big.jpg Rote 802701 Big.jpg
\(123456789\!\) Riff 123456789 Big.jpg Rote 123456789 Big.jpg