Difference between revisions of "Truth table"

MyWikiBiz, Author Your Legacy — Sunday January 26, 2025
Jump to navigationJump to search
(→‎Document history: fill out doc history)
(update)
 
(37 intermediate revisions by the same user not shown)
Line 1: Line 1:
A '''truth table''' is a tabular array that illustrates the computation of a [[boolean function]], that is, a function of the form <math>f : \mathbb{B}^k \to \mathbb{B},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{B}</math> is the [[boolean domain]] <math>\{ 0, 1 \}.\!</math>
+
<font size="3">&#9758;</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
 +
 
 +
A '''truth table''' is a tabular array that illustrates the computation of a ''logical function'', that is, a function of the form <math>f : \mathbb{A}^k \to \mathbb{A},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{A}</math> is the domain of logical values <math>\{ \operatorname{false}, \operatorname{true} \}.</math>  The names of the logical values, or ''truth values'', are commonly abbreviated in accord with the equations <math>\operatorname{F} = \operatorname{false}</math> and <math>\operatorname{T} = \operatorname{true}.</math>
 +
 
 +
In many applications it is usual to represent a truth function by a [[boolean function]], that is, a function of the form <math>f : \mathbb{B}^k \to \mathbb{B},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{B}</math> is the [[boolean domain]] <math>\{ 0, 1 \}.\!</math> In most applications <math>\operatorname{false}</math> is represented by <math>0\!</math> and <math>\operatorname{true}</math> is represented by <math>1\!</math> but the opposite representation is also possible, depending on the overall representation of truth functions as boolean functions.  The remainder of this article assumes the usual representation, taking the equations <math>\operatorname{F} = 0</math> and <math>\operatorname{T} = 1</math> for granted.
  
 
==Logical negation==
 
==Logical negation==
  
'''[[Logical negation]]''' is an [[logical operation|operation]] on one [[logical value]], typically the value of a [[proposition]], that produces a value of ''true'' when its operand is false and a value of ''false'' when its operand is true.
+
'''[[Logical negation]]''' is an operation on one logical value, typically the value of a proposition, that produces a value of ''true'' when its operand is false and a value of ''false'' when its operand is true.
  
The truth table of '''NOT p''' (also written as '''~p''' or '''&not;p''') is as follows:
+
The truth table of <math>\operatorname{NOT}~ p,</math> also written <math>\lnot p,\!</math> appears below:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:40%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%"
|+ '''Logical Negation'''
+
|+ style="height:30px" | <math>\text{Logical Negation}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="width:20%" | p
+
| style="width:50%" | <math>p\!</math>
! style="width:20%" | &not;p
+
| style="width:50%" | <math>\lnot p\!</math>
 
|-
 
|-
| F || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math>
 
|}
 
|}
  
 
<br>
 
<br>
  
The logical negation of a proposition '''p''' is notated in different ways in various contexts of discussion and fields of application.  Among these variants are the following:
+
The negation of a proposition <math>p\!</math> may be found notated in various ways in various contexts of application, often merely for typographical convenience.  Among these variants are the following:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; width:40%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" width="45%"
|+ '''Variant Notations'''
+
|+ style="height:30px" | <math>\text{Variant Notations}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="text-align:center" | Notation
+
| width="50%" align="center" | <math>\text{Notation}\!</math>
! Vocalization
+
| width="50%" | <math>\text{Vocalization}\!</math>
 
|-
 
|-
| style="text-align:center" | <math>\bar{p}</math>
+
| align="center" | <math>\bar{p}\!</math>
| bar ''p''
+
| <math>p\!</math> bar
 
|-
 
|-
| style="text-align:center" | <math>p'\!</math>
+
| align="center" | <math>\tilde{p}\!</math>
| ''p'' prime,<p> ''p'' complement
+
| <math>p\!</math> tilde
 
|-
 
|-
| style="text-align:center" | <math>!p\!</math>
+
| align="center" | <math>p'\!</math>
| bang ''p''
+
| <math>p\!</math> prime<br> <math>p\!</math> complement
 +
|-
 +
| align="center" | <math>!p\!</math>
 +
| bang <math>p\!</math>
 
|}
 
|}
  
Line 46: Line 53:
 
==Logical conjunction==
 
==Logical conjunction==
  
'''[[Logical conjunction]]''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are true.
+
'''[[Logical conjunction]]''' is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' if and only if both of its operands are true.
  
The truth table of '''p AND q''' (also written as '''p &and; q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows:
+
The truth table of <math>p ~\operatorname{AND}~ q,</math> also written <math>p \land q\!</math> or <math>p \cdot q,\!</math> appears below:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%"
|+ '''Logical Conjunction'''
+
|+ style="height:30px" | <math>\text{Logical Conjunction}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="width:15%" | p
+
| style="width:33%" | <math>p\!</math>
! style="width:15%" | q
+
| style="width:33%" | <math>q\!</math>
! style="width:15%" | p &and; q
+
| style="width:33%" | <math>p \land q</math>
 
|-
 
|-
| F || F || F
+
| <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| F || T || F
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| T || F || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| T || T || T
+
| <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|}
 
|}
  
Line 72: Line 79:
 
==Logical disjunction==
 
==Logical disjunction==
  
'''[[Logical disjunction]]''', also called '''logical alternation''', is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are false.
+
'''[[Logical disjunction]]''', also called '''logical alternation''', is an operation on two logical values, typically the values of two propositions, that produces a value of ''false'' if and only if both of its operands are false.
  
The truth table of '''p OR q''' (also written as '''p &or; q''') is as follows:
+
The truth table of <math>p ~\operatorname{OR}~ q,</math> also written <math>p \lor q,\!</math> appears below:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%"
|+ '''Logical Disjunction'''
+
|+ style="height:30px" | <math>\text{Logical Disjunction}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="width:15%" | p
+
| style="width:33%" | <math>p\!</math>
! style="width:15%" | q
+
| style="width:33%" | <math>q\!</math>
! style="width:15%" | p &or; q
+
| style="width:33%" | <math>p \lor q</math>
 
|-
 
|-
| F || F || F
+
| <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| F || T || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || F || T
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || T || T
+
| <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|}
 
|}
  
Line 98: Line 105:
 
==Logical equality==
 
==Logical equality==
  
'''[[Logical equality]]''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both operands are false or both operands are true.
+
'''[[Logical equality]]''' is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' if and only if both operands are false or both operands are true.
  
The truth table of '''p EQ q''' (also written as '''p = q''', '''p &harr; q''', or '''p &equiv; q''') is as follows:
+
The truth table of <math>p ~\operatorname{EQ}~ q,</math> also written <math>p = q,\!</math> <math>p \Leftrightarrow q,\!</math> or <math>p \equiv q,\!</math> appears below:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%"
|+ '''Logical Equality'''
+
|+ style="height:30px" | <math>\text{Logical Equality}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="width:15%" | p
+
| style="width:33%" | <math>p\!</math>
! style="width:15%" | q
+
| style="width:33%" | <math>q\!</math>
! style="width:15%" | p = q
+
| style="width:33%" | <math>p = q\!</math>
 
|-
 
|-
| F || F || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| F || T || F
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| T || F || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| T || T || T
+
| <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|}
 
|}
  
Line 124: Line 131:
 
==Exclusive disjunction==
 
==Exclusive disjunction==
  
'''[[Exclusive disjunction]]''', also known as '''logical inequality''' or '''symmetric difference''', is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' just in case exactly one of its operands is true.
+
'''[[Exclusive disjunction]]''', also known as '''logical inequality''' or '''symmetric difference''', is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' just in case exactly one of its operands is true.
  
The truth table of '''p XOR q''' (also written as '''p + q''', '''p &oplus; q''', or '''p &ne; q''') is as follows:
+
The truth table of <math>p ~\operatorname{XOR}~ q,</math> also written <math>p + q\!</math> or <math>p \ne q,\!</math> appears below:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%"
|+ '''Exclusive Disjunction'''
+
|+ style="height:30px" | <math>\text{Exclusive Disjunction}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="width:15%" | p
+
| style="width:33%" | <math>p\!</math>
! style="width:15%" | q
+
| style="width:33%" | <math>q\!</math>
! style="width:15%" | p XOR q
+
| style="width:33%" | <math>p ~\operatorname{XOR}~ q</math>
 
|-
 
|-
| F || F || F
+
| <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| F || T || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || F || T
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || T || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math>
 
|}
 
|}
  
 
<br>
 
<br>
  
The following equivalents can then be deduced:
+
The following equivalents may then be deduced:
  
: <math>\begin{matrix}
+
{| align="center" cellspacing="10" width="90%"
p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\
+
|
\\
+
<math>\begin{matrix}
       & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\
+
p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q)
\\
+
\\[6pt]
 +
       & = & (p \lor q) & \land & (\lnot p \lor \lnot q)
 +
\\[6pt]
 
       & = & (p \lor q) & \land & \lnot (p \land q)
 
       & = & (p \lor q) & \land & \lnot (p \land q)
 
\end{matrix}</math>
 
\end{matrix}</math>
 +
|}
  
 
==Logical implication==
 
==Logical implication==
  
The '''[[logical implication]]''' and the '''[[material conditional]]''' are both associated with an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if the first operand is true and the second operand is false.
+
The '''[[logical implication]]''' relation and the '''material conditional''' function are both associated with an operation on two logical values, typically the values of two propositions, that produces a value of ''false'' if and only if the first operand is true and the second operand is false.
  
The truth table associated with the material conditional '''if p then q''' (symbolized as '''p&nbsp;&rarr;&nbsp;q''') and the logical implication '''p implies q''' (symbolized as '''p&nbsp;&rArr;&nbsp;q''') is as follows:
+
The truth table associated with the material conditional <math>\text{if}~ p ~\text{then}~ q,\!</math> symbolized <math>p \rightarrow q,\!</math> and the logical implication <math>p ~\text{implies}~ q,\!</math> symbolized <math>p \Rightarrow q,\!</math> appears below:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%"
|+ '''Logical Implication'''
+
|+ style="height:30px" | <math>\text{Logical Implication}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="width:15%" | p
+
| style="width:33%" | <math>p\!</math>
! style="width:15%" | q
+
| style="width:33%" | <math>q\!</math>
! style="width:15%" | p &rArr; q
+
| style="width:33%" | <math>p \Rightarrow q\!</math>
 
|-
 
|-
| F || F || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| F || T || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || F || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| T || T || T
+
| <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|}
 
|}
  
Line 186: Line 196:
 
==Logical NAND==
 
==Logical NAND==
  
The '''[[logical NAND]]''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are true.  In other words, it produces a value of ''true'' if and only if at least one of its operands is false.
+
The '''[[logical NAND]]''' is an operation on two logical values, typically the values of two propositions, that produces a value of ''false'' if and only if both of its operands are true.  In other words, it produces a value of ''true'' if and only if at least one of its operands is false.
  
The truth table of '''p NAND q''' (also written as '''p&nbsp;|&nbsp;q''' or '''p&nbsp;&uarr;&nbsp;q''') is as follows:
+
The truth table of <math>p ~\operatorname{NAND}~ q,</math> also written <math>p \stackrel{\circ}{\curlywedge} q\!</math> or <math>p \barwedge q,\!</math> appears below:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%"
|+ '''Logical NAND'''
+
|+ style="height:30px" | <math>\text{Logical NAND}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="width:15%" | p
+
| style="width:33%" | <math>p\!</math>
! style="width:15%" | q
+
| style="width:33%" | <math>q\!</math>
! style="width:15%" | p &uarr; q
+
| style="width:33%" | <math>p \stackrel{\circ}{\curlywedge} q\!</math>
 
|-
 
|-
| F || F || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| F || T || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || F || T
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || T || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math>
 
|}
 
|}
  
Line 212: Line 222:
 
==Logical NNOR==
 
==Logical NNOR==
  
The '''[[logical NNOR]]''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are false.  In other words, it produces a value of ''false'' if and only if at least one of its operands is true.
+
The '''[[logical NNOR]]''' (&ldquo;Neither Nor&rdquo;) is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' if and only if both of its operands are false.  In other words, it produces a value of ''false'' if and only if at least one of its operands is true.
  
The truth table of '''p NNOR q''' (also written as '''p&nbsp;&perp;&nbsp;q''' or '''p&nbsp;&darr;&nbsp;q''') is as follows:
+
The truth table of <math>p ~\operatorname{NNOR}~ q,</math> also written <math>p \curlywedge q,\!</math> appears below:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%"
|+ '''Logical NNOR'''
+
|+ style="height:30px" | <math>\text{Logical NNOR}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="width:15%" | p
+
| style="width:33%" | <math>p\!</math>
! style="width:15%" | q
+
| style="width:33%" | <math>q\!</math>
! style="width:15%" | p &darr; q
+
| style="width:33%" | <math>p \curlywedge q\!</math>
 
|-
 
|-
| F || F || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| F || T || F
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| T || F || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| T || T || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math>
 
|}
 
|}
  
 
<br>
 
<br>
  
==Logical operators==
+
==Translations==
 +
 
 +
* [http://zh.wikipedia.org/wiki/%E7%9C%9F%E5%80%BC%E8%A1%A8 &#20013;&#25991; : &#30495;&#20540;&#34920;]
 +
 
 +
==Syllabus==
 +
 
 +
===Focal nodes===
 +
 
 +
* [[Inquiry Live]]
 +
* [[Logic Live]]
 +
 
 +
===Peer nodes===
 +
 
 +
* [http://intersci.ss.uci.edu/wiki/index.php/Truth_table Truth Table @ InterSciWiki]
 +
* [http://mywikibiz.com/Truth_table Truth Table @ MyWikiBiz]
 +
* [http://ref.subwiki.org/wiki/Truth_table Truth Table @ Subject Wikis]
 +
* [http://en.wikiversity.org/wiki/Truth_table Truth Table @ Wikiversity]
 +
* [http://beta.wikiversity.org/wiki/Truth_table Truth Table @ Wikiversity Beta]
 +
 
 +
===Logical operators===
  
 
{{col-begin}}
 
{{col-begin}}
Line 251: Line 280:
 
{{col-end}}
 
{{col-end}}
  
==Related topics==
+
===Related topics===
  
 
{{col-begin}}
 
{{col-begin}}
 
{{col-break}}
 
{{col-break}}
 
* [[Ampheck]]
 
* [[Ampheck]]
* [[Boolean algebra]]
 
 
* [[Boolean domain]]
 
* [[Boolean domain]]
 
* [[Boolean function]]
 
* [[Boolean function]]
 +
* [[Boolean-valued function]]
 +
* [[Differential logic]]
 
{{col-break}}
 
{{col-break}}
* [[Boolean-valued function]]
 
* [[Entitative graph]]
 
* [[Existential graph]]
 
 
* [[Logical graph]]
 
* [[Logical graph]]
 +
* [[Minimal negation operator]]
 +
* [[Multigrade operator]]
 +
* [[Parametric operator]]
 +
* [[Peirce's law]]
 
{{col-break}}
 
{{col-break}}
* [[Minimal negation operator]]
 
* [[Monadic predicate calculus]]
 
 
* [[Propositional calculus]]
 
* [[Propositional calculus]]
 +
* [[Sole sufficient operator]]
 +
* [[Truth table]]
 +
* [[Universe of discourse]]
 
* [[Zeroth order logic]]
 
* [[Zeroth order logic]]
 
{{col-end}}
 
{{col-end}}
  
==Document history==
+
===Relational concepts===
 +
 
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Continuous predicate]]
 +
* [[Hypostatic abstraction]]
 +
* [[Logic of relatives]]
 +
* [[Logical matrix]]
 +
{{col-break}}
 +
* [[Relation (mathematics)|Relation]]
 +
* [[Relation composition]]
 +
* [[Relation construction]]
 +
* [[Relation reduction]]
 +
{{col-break}}
 +
* [[Relation theory]]
 +
* [[Relative term]]
 +
* [[Sign relation]]
 +
* [[Triadic relation]]
 +
{{col-end}}
 +
 
 +
===Information, Inquiry===
 +
 
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Inquiry]]
 +
* [[Dynamics of inquiry]]
 +
{{col-break}}
 +
* [[Semeiotic]]
 +
* [[Logic of information]]
 +
{{col-break}}
 +
* [[Descriptive science]]
 +
* [[Normative science]]
 +
{{col-break}}
 +
* [[Pragmatic maxim]]
 +
* [[Truth theory]]
 +
{{col-end}}
  
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
+
===Related articles===
  
 
{{col-begin}}
 
{{col-begin}}
 
{{col-break}}
 
{{col-break}}
* [http://mywikibiz.com/Truth_table Truth Table], [http://mywikibiz.com/ MyWikiBiz]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Cactus_Language Cactus Language]
* [http://beta.wikiversity.org/wiki/Truth_table Truth Table], [http://beta.wikiversity.org/ Beta Wikiversity]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Futures_Of_Logical_Graphs Futures Of Logical Graphs]
* [http://www.getwiki.net/-Truth_Table Truth Table], [http://www.getwiki.net/ GetWiki]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Propositional_Equation_Reasoning_Systems Propositional Equation Reasoning Systems]
 +
{{col-break}}
 +
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_:_Introduction Differential Logic : Introduction]
 +
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Propositional_Calculus Differential Propositional Calculus]
 +
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_and_Dynamic_Systems_2.0 Differential Logic and Dynamic Systems]
 
{{col-break}}
 
{{col-break}}
* [http://www.wikinfo.org/index.php/Truth_table Truth Table], [http://www.wikinfo.org/ Wikinfo]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Prospects_for_Inquiry_Driven_Systems Prospects for Inquiry Driven Systems]
* [http://www.textop.org/wiki/index.php?title=Truth_table Truth Table], [http://www.textop.org/wiki/ Textop Wiki]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Introduction_to_Inquiry_Driven_Systems Introduction to Inquiry Driven Systems]
* [http://en.wikipedia.org/w/index.php?title=Truth_table&oldid=77110085 Truth Table], [http://en.wikipedia.org/ Wikipedia]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Inquiry_Driven_Systems Inquiry Driven Systems : Inquiry Into Inquiry]
 
{{col-end}}
 
{{col-end}}
  
<br><sharethis />
+
==Document history==
 +
 
 +
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
 +
 
 +
* [http://intersci.ss.uci.edu/wiki/index.php/Truth_table Truth Table], [http://intersci.ss.uci.edu/ InterSciWiki]
 +
* [http://mywikibiz.com/Truth_table Truth Table], [http://mywikibiz.com/ MyWikiBiz]
 +
* [http://semanticweb.org/wiki/Truth_table Truth Table], [http://semanticweb.org/ SemanticWeb]
 +
* [http://wikinfo.org/w/index.php/Truth_table Truth Table], [http://wikinfo.org/w/ Wikinfo]
 +
* [http://en.wikiversity.org/wiki/Truth_table Truth Table], [http://en.wikiversity.org/ Wikiversity]
 +
* [http://beta.wikiversity.org/wiki/Truth_table Truth Table], [http://beta.wikiversity.org/ Wikiversity Beta]
 +
* [http://en.wikipedia.org/w/index.php?title=Truth_table&oldid=77110085 Truth Table], [http://en.wikipedia.org/ Wikipedia]
  
 +
[[Category:Inquiry]]
 +
[[Category:Open Educational Resource]]
 +
[[Category:Peer Educational Resource]]
 +
[[Category:Charles Sanders Peirce]]
 
[[Category:Combinatorics]]
 
[[Category:Combinatorics]]
 
[[Category:Computer Science]]
 
[[Category:Computer Science]]

Latest revision as of 03:25, 30 October 2015

This page belongs to resource collections on Logic and Inquiry.

A truth table is a tabular array that illustrates the computation of a logical function, that is, a function of the form \(f : \mathbb{A}^k \to \mathbb{A},\) where \(k\!\) is a non-negative integer and \(\mathbb{A}\) is the domain of logical values \(\{ \operatorname{false}, \operatorname{true} \}.\) The names of the logical values, or truth values, are commonly abbreviated in accord with the equations \(\operatorname{F} = \operatorname{false}\) and \(\operatorname{T} = \operatorname{true}.\)

In many applications it is usual to represent a truth function by a boolean function, that is, a function of the form \(f : \mathbb{B}^k \to \mathbb{B},\) where \(k\!\) is a non-negative integer and \(\mathbb{B}\) is the boolean domain \(\{ 0, 1 \}.\!\) In most applications \(\operatorname{false}\) is represented by \(0\!\) and \(\operatorname{true}\) is represented by \(1\!\) but the opposite representation is also possible, depending on the overall representation of truth functions as boolean functions. The remainder of this article assumes the usual representation, taking the equations \(\operatorname{F} = 0\) and \(\operatorname{T} = 1\) for granted.

Logical negation

Logical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false and a value of false when its operand is true.

The truth table of \(\operatorname{NOT}~ p,\) also written \(\lnot p,\!\) appears below:


\(\text{Logical Negation}\!\)
\(p\!\) \(\lnot p\!\)
\(\operatorname{F}\) \(\operatorname{T}\)
\(\operatorname{T}\) \(\operatorname{F}\)


The negation of a proposition \(p\!\) may be found notated in various ways in various contexts of application, often merely for typographical convenience. Among these variants are the following:


\(\text{Variant Notations}\!\)
\(\text{Notation}\!\) \(\text{Vocalization}\!\)
\(\bar{p}\!\) \(p\!\) bar
\(\tilde{p}\!\) \(p\!\) tilde
\(p'\!\) \(p\!\) prime
\(p\!\) complement
\(!p\!\) bang \(p\!\)


Logical conjunction

Logical conjunction is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are true.

The truth table of \(p ~\operatorname{AND}~ q,\) also written \(p \land q\!\) or \(p \cdot q,\!\) appears below:


\(\text{Logical Conjunction}\!\)
\(p\!\) \(q\!\) \(p \land q\)
\(\operatorname{F}\) \(\operatorname{F}\) \(\operatorname{F}\)
\(\operatorname{F}\) \(\operatorname{T}\) \(\operatorname{F}\)
\(\operatorname{T}\) \(\operatorname{F}\) \(\operatorname{F}\)
\(\operatorname{T}\) \(\operatorname{T}\) \(\operatorname{T}\)


Logical disjunction

Logical disjunction, also called logical alternation, is an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if both of its operands are false.

The truth table of \(p ~\operatorname{OR}~ q,\) also written \(p \lor q,\!\) appears below:


\(\text{Logical Disjunction}\!\)
\(p\!\) \(q\!\) \(p \lor q\)
\(\operatorname{F}\) \(\operatorname{F}\) \(\operatorname{F}\)
\(\operatorname{F}\) \(\operatorname{T}\) \(\operatorname{T}\)
\(\operatorname{T}\) \(\operatorname{F}\) \(\operatorname{T}\)
\(\operatorname{T}\) \(\operatorname{T}\) \(\operatorname{T}\)


Logical equality

Logical equality is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both operands are false or both operands are true.

The truth table of \(p ~\operatorname{EQ}~ q,\) also written \(p = q,\!\) \(p \Leftrightarrow q,\!\) or \(p \equiv q,\!\) appears below:


\(\text{Logical Equality}\!\)
\(p\!\) \(q\!\) \(p = q\!\)
\(\operatorname{F}\) \(\operatorname{F}\) \(\operatorname{T}\)
\(\operatorname{F}\) \(\operatorname{T}\) \(\operatorname{F}\)
\(\operatorname{T}\) \(\operatorname{F}\) \(\operatorname{F}\)
\(\operatorname{T}\) \(\operatorname{T}\) \(\operatorname{T}\)


Exclusive disjunction

Exclusive disjunction, also known as logical inequality or symmetric difference, is an operation on two logical values, typically the values of two propositions, that produces a value of true just in case exactly one of its operands is true.

The truth table of \(p ~\operatorname{XOR}~ q,\) also written \(p + q\!\) or \(p \ne q,\!\) appears below:


\(\text{Exclusive Disjunction}\!\)
\(p\!\) \(q\!\) \(p ~\operatorname{XOR}~ q\)
\(\operatorname{F}\) \(\operatorname{F}\) \(\operatorname{F}\)
\(\operatorname{F}\) \(\operatorname{T}\) \(\operatorname{T}\)
\(\operatorname{T}\) \(\operatorname{F}\) \(\operatorname{T}\)
\(\operatorname{T}\) \(\operatorname{T}\) \(\operatorname{F}\)


The following equivalents may then be deduced:

\(\begin{matrix} p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\[6pt] & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\[6pt] & = & (p \lor q) & \land & \lnot (p \land q) \end{matrix}\)

Logical implication

The logical implication relation and the material conditional function are both associated with an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if the first operand is true and the second operand is false.

The truth table associated with the material conditional \(\text{if}~ p ~\text{then}~ q,\!\) symbolized \(p \rightarrow q,\!\) and the logical implication \(p ~\text{implies}~ q,\!\) symbolized \(p \Rightarrow q,\!\) appears below:


\(\text{Logical Implication}\!\)
\(p\!\) \(q\!\) \(p \Rightarrow q\!\)
\(\operatorname{F}\) \(\operatorname{F}\) \(\operatorname{T}\)
\(\operatorname{F}\) \(\operatorname{T}\) \(\operatorname{T}\)
\(\operatorname{T}\) \(\operatorname{F}\) \(\operatorname{F}\)
\(\operatorname{T}\) \(\operatorname{T}\) \(\operatorname{T}\)


Logical NAND

The logical NAND is an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if both of its operands are true. In other words, it produces a value of true if and only if at least one of its operands is false.

The truth table of \(p ~\operatorname{NAND}~ q,\) also written \(p \stackrel{\circ}{\curlywedge} q\!\) or \(p \barwedge q,\!\) appears below:


\(\text{Logical NAND}\!\)
\(p\!\) \(q\!\) \(p \stackrel{\circ}{\curlywedge} q\!\)
\(\operatorname{F}\) \(\operatorname{F}\) \(\operatorname{T}\)
\(\operatorname{F}\) \(\operatorname{T}\) \(\operatorname{T}\)
\(\operatorname{T}\) \(\operatorname{F}\) \(\operatorname{T}\)
\(\operatorname{T}\) \(\operatorname{T}\) \(\operatorname{F}\)


Logical NNOR

The logical NNOR (“Neither Nor”) is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are false. In other words, it produces a value of false if and only if at least one of its operands is true.

The truth table of \(p ~\operatorname{NNOR}~ q,\) also written \(p \curlywedge q,\!\) appears below:


\(\text{Logical NNOR}\!\)
\(p\!\) \(q\!\) \(p \curlywedge q\!\)
\(\operatorname{F}\) \(\operatorname{F}\) \(\operatorname{T}\)
\(\operatorname{F}\) \(\operatorname{T}\) \(\operatorname{F}\)
\(\operatorname{T}\) \(\operatorname{F}\) \(\operatorname{F}\)
\(\operatorname{T}\) \(\operatorname{T}\) \(\operatorname{F}\)


Translations

Syllabus

Focal nodes

Peer nodes

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Related articles

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.