Difference between revisions of "Boolean-valued function"

MyWikiBiz, Author Your Legacy — Monday November 11, 2024
Jump to navigationJump to search
(standardize syllabus & add document history)
(update)
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
A '''boolean-valued function''' is a [[function (mathematics)|function]] of the type <math>f : X \to \mathbb{B},</math> where <math>X\!</math> is an arbitrary [[set]] and where <math>\mathbb{B}</math> is a [[boolean domain]].
+
<font size="3">&#9758;</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
  
In the [[formal science]]s &mdash; [[mathematics]], [[mathematical logic]], [[statistics]] &mdash; and their applied disciplines, a boolean-valued function may also be referred to as a [[characteristic function]], [[indicator function]], [[predicate]], or [[proposition]].  In all of these uses it is understood that the various terms refer to a mathematical object and not the corresponding [[semiotic]] sign or syntactic expression.
+
A '''boolean-valued function''' is a function of the type <math>f : X \to \mathbb{B},</math> where <math>X\!</math> is an arbitrary set and where <math>\mathbb{B}</math> is a [[boolean domain]].
  
In [[semantics|formal semantic]] theories of [[truth]], a '''truth predicate''' is a predicate on the [[sentence]]s of a [[formal language]], interpreted for logic, that formalizes the intuitive concept that is normally expressed by saying that a sentence is true.  A truth predicate may have additional domains beyond the formal language domain, if that is what is required to determine a final truth value.
+
In the formal sciences &mdash; mathematics, mathematical logic, statistics &mdash; and their applied disciplines, a boolean-valued function may also be referred to as a characteristic function, indicator function, predicate, or proposition.  In all of these uses it is understood that the various terms refer to a mathematical object and not the corresponding sign or syntactic expression.
 +
 
 +
In formal semantic theories of truth, a '''truth predicate''' is a predicate on the sentences of a formal language, interpreted for logic, that formalizes the intuitive concept that is normally expressed by saying that a sentence is true.  A truth predicate may have additional domains beyond the formal language domain, if that is what is required to determine a final truth value.
  
 
==Examples==
 
==Examples==
  
A '''binary sequence''' is a boolean-valued function <math>f : \mathbb{N}^+ \to \mathbb{B}</math>, where <math>\mathbb{N}^+ = \{ 1, 2, 3, \ldots \},</math>.  In other words, <math>f\!</math> is an infinite [[sequence]] of 0's and 1's.
+
A '''binary sequence''' is a boolean-valued function <math>f : \mathbb{N}^+ \to \mathbb{B}</math>, where <math>\mathbb{N}^+ = \{ 1, 2, 3, \ldots \},</math>.  In other words, <math>f\!</math> is an infinite sequence of 0's and 1's.
  
 
A '''binary sequence''' of '''length''' <math>k\!</math> is a boolean-valued function <math>f : [k] \to \mathbb{B}</math>, where <math>[k] = \{ 1, 2, \ldots k \}.</math>
 
A '''binary sequence''' of '''length''' <math>k\!</math> is a boolean-valued function <math>f : [k] \to \mathbb{B}</math>, where <math>[k] = \{ 1, 2, \ldots k \}.</math>
Line 13: Line 15:
 
==References==
 
==References==
  
* [[Frank Markham Brown|Brown, Frank Markham]] (2003), ''Boolean Reasoning: The Logic of Boolean Equations'', 1st edition, Kluwer Academic Publishers, Norwell, MA.  2nd edition, Dover Publications, Mineola, NY, 2003.
+
* Brown, Frank Markham (2003), ''Boolean Reasoning : The Logic of Boolean Equations'', 1st edition, Kluwer Academic Publishers, Norwell, MA.  2nd edition, Dover Publications, Mineola, NY, 2003.
  
* [[Zvi Kohavi|Kohavi, Zvi]] (1978), ''Switching and Finite Automata Theory'', 1st edition, McGraw–Hill, 1970.  2nd edition, McGraw–Hill, 1978.
+
* Kohavi, Zvi (1978), ''Switching and Finite Automata Theory'', 1st edition, McGraw–Hill, 1970.  2nd edition, McGraw–Hill, 1978.
  
* [[Robert R. Korfhage|Korfhage, Robert R.]] (1974), ''Discrete Computational Structures'', Academic Press, New York, NY.
+
* Korfhage, Robert R. (1974), ''Discrete Computational Structures'', Academic Press, New York, NY.
  
* [[Mathematical Society of Japan]], ''Encyclopedic Dictionary of Mathematics'', 2nd edition, 2 vols., Kiyosi Itô (ed.), MIT Press, Cambridge, MA, 1993.  Cited as EDM.
+
* Mathematical Society of Japan, ''Encyclopedic Dictionary of Mathematics'', 2nd edition, 2 vols., Kiyosi Itô (ed.), MIT Press, Cambridge, MA, 1993.  Cited as EDM.
  
* [[Marvin L. Minsky|Minsky, Marvin L.]], and [[Seymour A. Papert|Papert, Seymour, A.]] (1988), ''[[Perceptrons]], An Introduction to Computational Geometry'', MIT Press, Cambridge, MA, 1969.  Revised, 1972.  Expanded edition, 1988.
+
* Minsky, Marvin L., and Papert, Seymour, A. (1988), ''Perceptrons, An Introduction to Computational Geometry'', MIT Press, Cambridge, MA, 1969.  Revised, 1972.  Expanded edition, 1988.
  
 
==Syllabus==
 
==Syllabus==
 +
 +
===Focal nodes===
 +
 +
* [[Inquiry Live]]
 +
* [[Logic Live]]
 +
 +
===Peer nodes===
 +
 +
* [http://intersci.ss.uci.edu/wiki/index.php/Boolean-valued_function Boolean-Valued Function @ InterSciWiki]
 +
* [http://mywikibiz.com/Boolean-valued_function Boolean-Valued Function @ MyWikiBiz]
 +
* [http://ref.subwiki.org/wiki/Boolean-valued_function Boolean-Valued Function @ Subject Wikis]
 +
* [http://en.wikiversity.org/wiki/Boolean-valued_function Boolean-Valued Function @ Wikiversity]
 +
* [http://beta.wikiversity.org/wiki/Boolean-valued_function Boolean-Valued Function @ Wikiversity Beta]
  
 
===Logical operators===
 
===Logical operators===
Line 48: Line 63:
 
* [[Boolean function]]
 
* [[Boolean function]]
 
* [[Boolean-valued function]]
 
* [[Boolean-valued function]]
 +
* [[Differential logic]]
 
{{col-break}}
 
{{col-break}}
 
* [[Logical graph]]
 
* [[Logical graph]]
* [[Logical matrix]]
 
 
* [[Minimal negation operator]]
 
* [[Minimal negation operator]]
 +
* [[Multigrade operator]]
 +
* [[Parametric operator]]
 
* [[Peirce's law]]
 
* [[Peirce's law]]
 
{{col-break}}
 
{{col-break}}
 
* [[Propositional calculus]]
 
* [[Propositional calculus]]
 +
* [[Sole sufficient operator]]
 
* [[Truth table]]
 
* [[Truth table]]
 
* [[Universe of discourse]]
 
* [[Universe of discourse]]
Line 60: Line 78:
 
{{col-end}}
 
{{col-end}}
  
==Document history==
+
===Relational concepts===
 +
 
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Continuous predicate]]
 +
* [[Hypostatic abstraction]]
 +
* [[Logic of relatives]]
 +
* [[Logical matrix]]
 +
{{col-break}}
 +
* [[Relation (mathematics)|Relation]]
 +
* [[Relation composition]]
 +
* [[Relation construction]]
 +
* [[Relation reduction]]
 +
{{col-break}}
 +
* [[Relation theory]]
 +
* [[Relative term]]
 +
* [[Sign relation]]
 +
* [[Triadic relation]]
 +
{{col-end}}
 +
 
 +
===Information, Inquiry===
 +
 
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Inquiry]]
 +
* [[Dynamics of inquiry]]
 +
{{col-break}}
 +
* [[Semeiotic]]
 +
* [[Logic of information]]
 +
{{col-break}}
 +
* [[Descriptive science]]
 +
* [[Normative science]]
 +
{{col-break}}
 +
* [[Pragmatic maxim]]
 +
* [[Truth theory]]
 +
{{col-end}}
  
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
+
===Related articles===
  
 
{{col-begin}}
 
{{col-begin}}
 
{{col-break}}
 
{{col-break}}
* [http://mywikibiz.com/Boolean-valued_function Boolean-Valued Function], [http://mywikibiz.com/ MyWikiBiz]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Cactus_Language Cactus Language]
* [http://beta.wikiversity.org/wiki/Boolean-valued_function Boolean-Valued Function], [http://beta.wikiversity.org/ Beta Wikiversity]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Futures_Of_Logical_Graphs Futures Of Logical Graphs]
* [http://planetmath.org/encyclopedia/BooleanValuedFunction.html Boolean-Valued Function], [http://planetmath.org/ PlanetMath]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Propositional_Equation_Reasoning_Systems Propositional Equation Reasoning Systems]
 +
{{col-break}}
 +
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_:_Introduction Differential Logic : Introduction]
 +
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Propositional_Calculus Differential Propositional Calculus]
 +
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_and_Dynamic_Systems_2.0 Differential Logic and Dynamic Systems]
 
{{col-break}}
 
{{col-break}}
* [http://www.wikinfo.org/index.php/Boolean-valued_function Boolean-Valued Function], [http://www.wikinfo.org/ Wikinfo]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Prospects_for_Inquiry_Driven_Systems Prospects for Inquiry Driven Systems]
* [http://www.textop.org/wiki/index.php?title=Boolean-valued_function Boolean-Valued Function], [http://www.textop.org/wiki/ Textop Wiki]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Introduction_to_Inquiry_Driven_Systems Introduction to Inquiry Driven Systems]
* [http://en.wikipedia.org/w/index.php?title=Boolean-valued_function&oldid=67166584 Boolean-Valued Function], [http://en.wikipedia.org/ Wikipedia]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Inquiry_Driven_Systems Inquiry Driven Systems : Inquiry Into Inquiry]
 
{{col-end}}
 
{{col-end}}
  
<br><sharethis />
+
==Document history==
 +
 
 +
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
 +
 
 +
* [http://intersci.ss.uci.edu/wiki/index.php/Boolean-valued_function Boolean-Valued Function], [http://intersci.ss.uci.edu/ InterSciWiki]
 +
* [http://mywikibiz.com/Boolean-valued_function Boolean-Valued Function], [http://mywikibiz.com/ MyWikiBiz]
 +
* [http://planetmath.org/BooleanValuedFunction Boolean-Valued Function], [http://planetmath.org/ PlanetMath]
 +
* [http://wikinfo.org/w/index.php/Boolean-valued_function Boolean-Valued Function], [http://wikinfo.org/w/ Wikinfo]
 +
* [http://en.wikiversity.org/wiki/Boolean-valued_function Boolean-Valued Function], [http://en.wikiversity.org/ Wikiversity]
 +
* [http://beta.wikiversity.org/wiki/Boolean-valued_function Boolean-Valued Function], [http://beta.wikiversity.org/ Wikiversity Beta]
 +
* [http://en.wikipedia.org/w/index.php?title=Boolean-valued_function&oldid=67166584 Boolean-Valued Function], [http://en.wikipedia.org/ Wikipedia]
  
 +
[[Category:Inquiry]]
 +
[[Category:Open Educational Resource]]
 +
[[Category:Peer Educational Resource]]
 
[[Category:Combinatorics]]
 
[[Category:Combinatorics]]
 
[[Category:Computer Science]]
 
[[Category:Computer Science]]

Latest revision as of 21:14, 5 November 2015

This page belongs to resource collections on Logic and Inquiry.

A boolean-valued function is a function of the type \(f : X \to \mathbb{B},\) where \(X\!\) is an arbitrary set and where \(\mathbb{B}\) is a boolean domain.

In the formal sciences — mathematics, mathematical logic, statistics — and their applied disciplines, a boolean-valued function may also be referred to as a characteristic function, indicator function, predicate, or proposition. In all of these uses it is understood that the various terms refer to a mathematical object and not the corresponding sign or syntactic expression.

In formal semantic theories of truth, a truth predicate is a predicate on the sentences of a formal language, interpreted for logic, that formalizes the intuitive concept that is normally expressed by saying that a sentence is true. A truth predicate may have additional domains beyond the formal language domain, if that is what is required to determine a final truth value.

Examples

A binary sequence is a boolean-valued function \(f : \mathbb{N}^+ \to \mathbb{B}\), where \(\mathbb{N}^+ = \{ 1, 2, 3, \ldots \},\). In other words, \(f\!\) is an infinite sequence of 0's and 1's.

A binary sequence of length \(k\!\) is a boolean-valued function \(f : [k] \to \mathbb{B}\), where \([k] = \{ 1, 2, \ldots k \}.\)

References

  • Brown, Frank Markham (2003), Boolean Reasoning : The Logic of Boolean Equations, 1st edition, Kluwer Academic Publishers, Norwell, MA. 2nd edition, Dover Publications, Mineola, NY, 2003.
  • Kohavi, Zvi (1978), Switching and Finite Automata Theory, 1st edition, McGraw–Hill, 1970. 2nd edition, McGraw–Hill, 1978.
  • Korfhage, Robert R. (1974), Discrete Computational Structures, Academic Press, New York, NY.
  • Mathematical Society of Japan, Encyclopedic Dictionary of Mathematics, 2nd edition, 2 vols., Kiyosi Itô (ed.), MIT Press, Cambridge, MA, 1993. Cited as EDM.
  • Minsky, Marvin L., and Papert, Seymour, A. (1988), Perceptrons, An Introduction to Computational Geometry, MIT Press, Cambridge, MA, 1969. Revised, 1972. Expanded edition, 1988.

Syllabus

Focal nodes

Peer nodes

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Related articles

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.