Difference between revisions of "Logical conjunction"

MyWikiBiz, Author Your Legacy — Sunday January 26, 2025
Jump to navigationJump to search
(update)
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<font size="3">&#9758;</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
 
<font size="3">&#9758;</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
  
'''Logical conjunction''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are true.
+
'''Logical conjunction''' is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' if and only if both of its operands are true.
  
The [[truth table]] of '''p AND q''' (also written as '''p &and; q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows:
+
The [[truth table]] of <math>p ~\operatorname{AND}~ q,</math> also written <math>p \land q~\!</math> or <math>p \cdot q,\!</math> appears below:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%"
|+ '''Logical Conjunction'''
+
|+ style="height:30px" | <math>\text{Logical Conjunction}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="width:15%" | p
+
| style="width:33%" | <math>p\!</math>
! style="width:15%" | q
+
| style="width:33%" | <math>q\!</math>
! style="width:15%" | p &and; q
+
| style="width:33%" | <math>p \land q</math>
 
|-
 
|-
| F || F || F
+
| <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| F || T || F
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| T || F || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| T || T || T
+
| <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|}
 
|}
  
Line 29: Line 29:
 
===Focal nodes===
 
===Focal nodes===
  
{{col-begin}}
 
{{col-break}}
 
 
* [[Inquiry Live]]
 
* [[Inquiry Live]]
{{col-break}}
 
 
* [[Logic Live]]
 
* [[Logic Live]]
{{col-end}}
 
  
 
===Peer nodes===
 
===Peer nodes===
  
{{col-begin}}
+
* [http://intersci.ss.uci.edu/wiki/index.php/Logical_conjunction Logical Conjunction @ InterSciWiki]
{{col-break}}
 
 
* [http://mywikibiz.com/Logical_conjunction Logical Conjunction @ MyWikiBiz]
 
* [http://mywikibiz.com/Logical_conjunction Logical Conjunction @ MyWikiBiz]
* [http://mathweb.org/wiki/Logical_conjunction Logical Conjunction @ MathWeb Wiki]
+
* [http://ref.subwiki.org/wiki/Logical_conjunction Logical Conjunction @ Subject Wikis]
* [http://netknowledge.org/wiki/Logical_conjunction Logical Conjunction @ NetKnowledge]
+
* [http://en.wikiversity.org/wiki/Logical_conjunction Logical Conjunction @ Wikiversity]
{{col-break}}
+
* [http://beta.wikiversity.org/wiki/Logical_conjunction Logical Conjunction @ Wikiversity Beta]
* [http://wiki.oercommons.org/mediawiki/index.php/Logical_conjunction Logical Conjunction @ OER Commons]
 
* [http://p2pfoundation.net/Logical_Conjunction Logical Conjunction @ P2P Foundation]
 
* [http://semanticweb.org/wiki/Logical_conjunction Logical Conjunction @ SemanticWeb]
 
{{col-end}}
 
  
 
===Logical operators===
 
===Logical operators===
Line 126: Line 117:
 
===Related articles===
 
===Related articles===
  
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Semiotic_Information Jon Awbrey, &ldquo;Semiotic Information&rdquo;]
+
{{col-begin}}
 
+
{{col-break}}
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Introduction_to_Inquiry_Driven_Systems Jon Awbrey, &ldquo;Introduction To Inquiry Driven Systems&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Cactus_Language Cactus Language]
 
+
* [http://intersci.ss.uci.edu/wiki/index.php/Futures_Of_Logical_Graphs Futures Of Logical Graphs]
* [http://mywikibiz.com/Directory:Jon_Awbrey/Essays/Prospects_For_Inquiry_Driven_Systems Jon Awbrey, &ldquo;Prospects For Inquiry Driven Systems&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Propositional_Equation_Reasoning_Systems Propositional Equation Reasoning Systems]
 
+
{{col-break}}
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Inquiry_Driven_Systems Jon Awbrey, &ldquo;Inquiry Driven Systems : Inquiry Into Inquiry&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_:_Introduction Differential Logic : Introduction]
 
+
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Propositional_Calculus Differential Propositional Calculus]
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Propositional_Equation_Reasoning_Systems Jon Awbrey, &ldquo;Propositional Equation Reasoning Systems&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_and_Dynamic_Systems_2.0 Differential Logic and Dynamic Systems]
 
+
{{col-break}}
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Differential_Logic_:_Introduction Jon Awbrey, &ldquo;Differential Logic : Introduction&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Prospects_for_Inquiry_Driven_Systems Prospects for Inquiry Driven Systems]
 
+
* [http://intersci.ss.uci.edu/wiki/index.php/Introduction_to_Inquiry_Driven_Systems Introduction to Inquiry Driven Systems]
* [http://planetmath.org/encyclopedia/DifferentialPropositionalCalculus.html Jon Awbrey, &ldquo;Differential Propositional Calculus&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Inquiry_Driven_Systems Inquiry Driven Systems : Inquiry Into Inquiry]
 
+
{{col-end}}
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Differential_Logic_and_Dynamic_Systems_2.0 Jon Awbrey, &ldquo;Differential Logic and Dynamic Systems&rdquo;]
 
  
 
==Document history==
 
==Document history==
Line 146: Line 136:
 
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
 
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
  
{{col-begin}}
+
* [http://intersci.ss.uci.edu/wiki/index.php/Logical_conjunction Logical Conjunction], [http://intersci.ss.uci.edu/ InterSciWiki]
{{col-break}}
 
 
* [http://mywikibiz.com/Logical_conjunction Logical Conjunction], [http://mywikibiz.com/ MyWikiBiz]
 
* [http://mywikibiz.com/Logical_conjunction Logical Conjunction], [http://mywikibiz.com/ MyWikiBiz]
 +
* [http://wikinfo.org/w/index.php/Logical_conjunction Logical Conjunction], [http://wikinfo.org/w/ Wikinfo]
 +
* [http://en.wikiversity.org/wiki/Logical_conjunction Logical Conjunction], [http://en.wikiversity.org/ Wikiversity]
 
* [http://beta.wikiversity.org/wiki/Logical_conjunction Logical Conjunction], [http://beta.wikiversity.org/ Wikiversity Beta]
 
* [http://beta.wikiversity.org/wiki/Logical_conjunction Logical Conjunction], [http://beta.wikiversity.org/ Wikiversity Beta]
* [http://getwiki.net/-Logical_Conjunction Logical Conjunction], [http://getwiki.net/ GetWiki]
 
{{col-break}}
 
* [http://wikinfo.org/index.php/Logical_conjunction Logical Conjunction], [http://wikinfo.org/ Wikinfo]
 
* [http://textop.org/wiki/index.php?title=Logical_conjunction Logical Conjunction], [http://textop.org/wiki/ Textop Wiki]
 
 
* [http://en.wikipedia.org/w/index.php?title=Logical_conjunction&oldid=75153420 Logical Conjunction], [http://en.wikipedia.org/ Wikipedia]
 
* [http://en.wikipedia.org/w/index.php?title=Logical_conjunction&oldid=75153420 Logical Conjunction], [http://en.wikipedia.org/ Wikipedia]
{{col-end}}
 
 
<br><sharethis />
 
  
 
[[Category:Inquiry]]
 
[[Category:Inquiry]]
 
[[Category:Open Educational Resource]]
 
[[Category:Open Educational Resource]]
 
[[Category:Peer Educational Resource]]
 
[[Category:Peer Educational Resource]]
 +
[[Category:Charles Sanders Peirce]]
 
[[Category:Computer Science]]
 
[[Category:Computer Science]]
 
[[Category:Formal Languages]]
 
[[Category:Formal Languages]]

Latest revision as of 02:00, 31 October 2015

This page belongs to resource collections on Logic and Inquiry.

Logical conjunction is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are true.

The truth table of \(p ~\operatorname{AND}~ q,\) also written \(p \land q~\!\) or \(p \cdot q,\!\) appears below:


\(\text{Logical Conjunction}\!\)
\(p\!\) \(q\!\) \(p \land q\)
\(\operatorname{F}\) \(\operatorname{F}\) \(\operatorname{F}\)
\(\operatorname{F}\) \(\operatorname{T}\) \(\operatorname{F}\)
\(\operatorname{T}\) \(\operatorname{F}\) \(\operatorname{F}\)
\(\operatorname{T}\) \(\operatorname{T}\) \(\operatorname{T}\)


Syllabus

Focal nodes

Peer nodes

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Related articles

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.