Difference between revisions of "Directory talk:Jon Awbrey/Papers/Inquiry Driven Systems : Part 6"

MyWikiBiz, Author Your Legacy — Tuesday January 07, 2025
Jump to navigationJump to search
(MathJaX SuX ❢❢❢)
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<p align="center"><font face="curlz mt" size="7">'''MathJaX SuX ❢❢❢'''</font></p>
 +
 
<div class="nonumtoc">__TOC__</div>
 
<div class="nonumtoc">__TOC__</div>
 +
 +
'''NOTE. I am putting the last few Sections of Part 6 here until I can figure out why the article page is not rendering the full amount of edit page text that it used to show.'''
 +
 +
==6. Reflective Interpretive Frameworks (cont.)==
 +
 +
===6.47. Mutually Intelligible Codes===
 +
 +
Before this complex of relationships can be formalized in much detail, I must introduce linguistic devices for generating ''higher order signs'', used to indicate other signs, and ''situated signs'', indexed by the names of their users, their contexts of use, and other types of information incidental to their usage in general.  This leads to the consideration of ''systems of interpretation'' (SOIs) that maintain recursive mechanisms for naming everything within their purview.  This &ldquo;nominal generosity&rdquo; gives them a new order of generative capacity, producing a sufficient number of distinctive signs to name all the objects and then name the names that are needed in a given discussion.
 +
 +
Symbolic systems for quoting inscriptions and ascribing quotations are associated in metamathematics with ''gödel numberings'' of formal objects, enumerative functions that provide systematic but ostensibly arbitrary reference numbers for the signs and expressions in a formal language.  Assuming these signs and expressions denote anything at all, their formal enumerations become the ''codes'' of formal objects, just as programs taken literally are code names for certain mathematical objects known as computable functions.  Partial forms of specification notwithstanding, these codes are the only complete modes of representation that formal objects can have in the medium of mechanical activity.
 +
 +
In the dialogue of <math>\text{A}\!</math> and <math>\text{B}\!</math> there happens to be an exact coincidence between signs and states.  That is, the states of the interpretive systems <math>\text{A}\!</math> and <math>\text{B}\!</math> are not distinguished from the signs in <math>S\!</math> that are imagined to be mediating, moment by moment, the attentions of the interpretive agents <math>\text{A}\!</math> and <math>\text{B}\!</math> toward their respective objects in <math>O.\!</math>  So the question arises:  Is this identity bound to be a general property of all useful sign relations, or is it only a degenerate feature occurring by chance or unconscious design in the immediate example?
 +
 +
To move toward a resolution of this question I reason as follows.  In one direction, it seems obvious that a ''sign in use'' (SIU) by a particular interpreter constitutes a component of that agent's state.  In other words, the very notion of an identifiable SIU refers to numerous instances of a particular interpreter's state that share in the abstract property of being such instances, whether or not anyone can give a more concise or illuminating characterization of the concept under which these momentary states are gathered.  Conversely, it is at least conceivable that the whole state of a system, constituting its transitory response to the entirety of its environment, history, and goals, can be interpreted as a sign of something to someone.  In sum, there remains an outside chance of signs and states being precisely the same things, since nothing precludes the existence of an ''interpretive framework'' (IF) that could make it so.
 +
 +
Still, if the question about the distinction or coincidence between signs and states is restricted to the domains where existential realizations are conceivable, no matter whether in biological or computational media, then the prerequisites of the task become more severe, due to the narrower scope of materials that are admitted to answer them.  In focusing on this arena the problem is threefold:
 +
 +
# The crucial point is not just whether it is possible to imagine an ideal SOI, an external perspective or an independent POV, for which all states are signs, but whether this is so for the prospective SOI of the very agent that passes through these states.
 +
# To what extent can the transient states and persistent conduct of each agent in a community of interpretation take on a moderately public and objective aspect in relation to the other participants?
 +
# How far in this respect, in the common regard for this species of outward demeanor, can each agent's behavior act as a sign of genuine objects in the eyes of other interpreters?
 +
 +
The special task of a nuanced hermeneutic approach to computational interpretation is to realize the relativity of all formal codes to their formal coders, and to seek ways of facilitating mutual intelligibility among interpreters whose internal codes can be thoroughly private, synchronistically keyed to external events, and even a bit idiosyncratic.
 +
 +
Ultimately, working through this maze of &ldquo;meta&rdquo; questions, as posed on the tentative grounds of the present project, leads to a question about the ''logical reference frames'' or ''metamathematical coordinate systems'' that are supposed to distinguish &ldquo;objective&rdquo; from &ldquo;symbolic&rdquo; entities and are imagined to discriminate a range of gradations along their lines.  The question is:  Whether any gauge of objectivity or scale of virtuality has invariant properties discoverable by all independent interpreters, or whether all is vanity and inane relativism, and everything concerning a subjective point of view is sheer caprice?
 +
 +
Thus, the problem of mutual intelligibility turns on the question of ''common significance'':  How can there be signs that are truly public, when the most natural signs that distinct agents can know, their own internal states, have no guarantee and very little likelihood of being related in systematically fathomable ways?  As a partial answer to this, I am willing to contemplate certain forms of pre-established harmony, like the common evolution of a biological species or the shared culture of an interpretive community, but my experience has been that harmony, once established, quickly corrupts unless active means are available to maintain it.  So there still remains the task of identifying these means.  With or without the benefit of a prior consensus, or the assumption of an initial but possibly fragile equilibrium, an explanation of robust harmony must detail the modes of maintaining communication that enable coordinated action to persist in the meanest of times.
 +
 +
The formal character of these questions, in the potential complexities that can be forced on contemplation in the pursuit of their answers, is independent of the species of interpreters that are chosen for the termini of comparison, whether person to person, person to computer, or computer to computer.  As always, the truth of this kind of thesis is formal, all too formal.  What it brings is a new refrain of an old motif:  Are there meaningful, if necessarily formal series of analogies that can be strung from the patterns of whizzing electrons and humming protons, whose controlled modes of collective excitation form and inform the conducts of computers, all the way to the rather different patterns of wizened electrons and humbled protons, whose deliberate energies of communal striving substantiate the forms of life known to be intelligible?
 +
 +
A full consideration of the geometries available for the spaces in which these levels of reflective abstraction are commonly imagined to reside leads to the conclusion that familiar distinctions of &ldquo;top down&rdquo; versus &ldquo;bottom up&rdquo; are being taken for granted in an arena that has not even been established to be orientable.  Thus, it needs to be recognized that the distinction between objects and signs is relative to a definite system of interpretation.  The pragmatic theory of signs is designed, in part, precisely to deal with the circumstance that thoroughly objective states of systems can be signs of each other, undermining any pretended distinction between objects and signs that one might propose to draw on essential grounds.
 +
 +
From now on, I will reuse the ancient term ''gnomon'' in a technical sense to refer to the gödel numbers or code names of formal objects.  In other words, a gnomon is a gödel numbering or enumeration function that maps a domain of objects into a domain of signs, <math>\mathrm{Gno} : O \to S.\!</math>  When the syntactic domain <math>S\!</math> is contained within the object domain <math>O,\!</math> then the part of the gnomon that maps <math>S\!</math> into <math>S,\!</math> providing names for signs and expressions, is usually regarded as a ''quoting function''.
 +
 +
In the pluralistic contexts that go with pragmatic theories of signs, it is no longer entirely appropriate to refer to ''the'' gnomon of any object.  At any moment of discussion, I can only have so-and-so's gnomon or code word for each thing under the sun.  Thus, apparent references to a uniquely determined gnomon only make sense if taken as enthymemic invocations of the ordinary context and all that is comprehended to be implied in it, promising to convert tacit common sense into definite articulations of what is understood.  Actually achieving this requires each elliptic reference to the gnomon to be explicitly grounded in the context of informal discussion, interpreted with respect to the conventional basis of understanding assumed in it, and relayed to the indexing function taken for granted by all parties to it.
 +
 +
In computational terms, this brand of pluralism means that neither the gnomon nor the quoting function that forms a part of it can be viewed as well-defined unless it is indexed, explicitly or implicitly, by the name of a particular interpreter.  I will use either one of the equivalent notations <math>{}^{\backprime\backprime} \mathrm{Gno}_i (x) {}^{\prime\prime}\!</math> or <math>{}^{\backprime\backprime\langle} x, i {}^{\rangle\prime\prime}\!</math> to indicate the gnomon of the object <math>x\!</math> with respect to the interpreter <math>i.\!</math>  The value <math>\mathrm{Gno}_i (x) = {}^{\langle} x, i {}^{\rangle} \in S\!</math> is the ''nominal sign in use'' or the ''name in use'' (NIU) of the object <math>x\!</math> with respect to the interpreter <math>i,\!</math> and thus it constitutes a component of <math>i\!</math>'s state.
 +
 +
In the special case where <math>x\!</math> is a sign or expression in the syntactic domain, then <math>\mathrm{Gno}_i (x) = {}^{\langle} x, i {}^{\rangle}\!</math> is tantamount to the quotation of <math>x\!</math> by and for the use of the interpreter <math>i,\!</math> in short, the nominal sign to <math>i\!</math> that makes <math>x\!</math> an object for <math>i.\!</math>  For signs and expressions, it is usually only the quoting function that makes them objects.  But nothing is an object in any sense for an interpreter unless it is an object of a sign relation for that interpreter.  Therefore, &hellip;
 +
 +
If it is now asked what measure of invariant understanding can be enjoyed by diverse parties of interpretive agents, then the discussion has come upon an issue with a familiar echo in mathematical analysis.  The organization of many local coordinate frames into systems capable of supporting communicative references to relatively &ldquo;objective&rdquo; objects is usually handled by means of the concept of a ''manifold''.  Therefore, the analogous task that is suggested for this project is to arrive at a workable definition of ''sign relational manifolds''.
 +
 +
The discrete nature of the <math>\text{A}\!</math> and <math>\text{B}\!</math> dialogue renders moot the larger share of issues of interest in continuous and differentiable manifolds.  However, it is still possible to get things moving in this direction by looking at simple structural analogies that connect the pragmatic theory of sign relations with the basic notions of analysis on manifolds.
 +
 +
===6.48. Discourse Analysis : Ways and Means===
 +
 +
Before the discussion of the <math>\text{A}\!</math> and <math>\text{B}\!</math> dialogue can proceed to richer veins of semantic structure it will be necessary to extract the relevant traces of embedded sign relations from their environments of informally interpreted syntax.
 +
 +
On the substantive front, sign relations serving as raw materials of discourse need to be refined and their content assayed, but first their identifying signatures must be sounded out, carved out, and lifted from their embroiling inclusions in the dense strata of obscure intuitions that sediment ordinary discussion.  On the instrumental front, sign relations serving as primitive tools of discourse analysis need to be identified and improved by a deliberate examination of their designs and purposes.
 +
 +
So far, the models and methods made available to formal treatment were borrowed outright, with little hesitation and less recognition, from the context of casual discussion.  Thus, these materials and mechanisms have come to the threshold of critical reflection already in play, devoid of concern for the presuppositions and consequences associated with their use, and only belatedly turned to the effortful work and tedious formalities of self-conscious exposition.
 +
 +
To reflect on the properties of complex and higher order sign relations with any degree of clarity it is necessary to arrange a clearer field of investigation and a less cluttered staging area for analytic work than is commonly provided.  Habitual processes of interpretation that typically operate as automatic routines and uncritical defaults in the informal context of discussion have to be selectively inhibited, slowed down, and critically examined as objective possibilities, instead of being taken for granted as absolute necessities.
 +
 +
In other words, an apparatus for critical reflection does not merely add more mirrors to the kaleidoscopic fun-house of interpretive discourse, but it provides transient moments of equanimity, or balanced neutrality, and a moderately detached perspective on alternative points of view.  A scope so limited does not by any means grant a god's eye view, but permits a sufficient quantity of light to consider how the original array of sights and reflections might have been created otherwise.
 +
 +
Ordinarily, the extra degree of attention to syntax that is needed for critical reflection on interpretive processes is called into play by means of syntactic operators and diacritical devices acting at the level of individual signs and elementary expressions.  For example, quotation marks are used to force one type of &ldquo;semantic ascent&rdquo;, causing signs to be treated as objects and marking points of interpretive shift as they occur in the syntactic medium.  But these operators and devices must be symbolized, and these symbols must be interpreted.  Consequently, there is no way to avoid the invocation of a cohering interpretive framework, one that needs to be specialized for analytic purposes.
 +
 +
The best way to achieve the desired type of reflective capacity is by attaching a parameter to the interpretive framework used as an instrument of formal study, specifying certain choices or interpretive presumptions that affect the entire context of discussion.  The aesthetic distance needed to arrive at a formal perspective on sign relations is maintained, not by jury-rigging ordinary discussion with locally effective syntactic devices, but by asking the reader to consider certain dimensions of parametric variation in the global interpretive frameworks used to comprehend the sign relations under study.
 +
 +
The interpretive parameter of paramount importance to this work is one that is critical to reflection.  It can be presented as a choice between two alternative conventions, affecting the way one reflexively regards each sign in a text:  (1) as a sign provoking interest only in passing, exchanged for the sake of a meaningful object it is always taken for granted to have, or (2) as a sign comprising an interest in and of itself, a state of a system or a modification of a medium that can signify an external value but does not necessarily denote anything else at all.  I will name these options for responding to signs according to the aspects of character that are most appreciated in their net effects, whether signs for the sake of objects, or signs for their own sake, respectively.
 +
 +
The first option I call the ''object convention'', recognizing it as the natural default of informal language use.  In the ordinary language context it is the automatic assumption that signs and expressions are intended to denote something external to themselves, and even though it is quite obvious to all interpreters that the medium is filled with the appearances of signs and not with the objects themselves, this fact passes for little more than transitory interest in the rush to cash out tokens for their indicated values.
 +
 +
The object convention, as appropriate to an introduction that needs to begin in the context of ordinary discussion, is the parametric choice that was left in force throughout the treatment of the A and B example.  Doing things this way is like trying to roller skate in a buffalo herd, that is, it attempts to formalize a fragment of discussion on a patchwork of local scales without interrupting the automatic routines and default assumptions that prevail on a global basis in the informal context.  Ultimately, one cannot avoid stumbling over the hoofprints <math>( {}^{\backprime\backprime} \, {}^{\prime\prime} )\!</math> of overly cited and opaquely enthymematic textual deposits.
 +
 +
The second option I call the ''sign convention'', observing it to be the treatment of choice in programming and formal language studies.  In the formal language context it is necessary to consider the possibility that not all signs and expressions are assured to denote or even connote much of anything at all.  This danger is amplified in computational frameworks where it resonates with a related theme, that not all programs are guaranteed to terminate normally with a definite result.  In order to deal with these eventualities, a more cautious approach to sign relations is demanded to cover the risk of generating nonsense, in other words, to guard against degenerate forms of sign relations that fail to serve any significant purpose in communication or inquiry.
 +
 +
Whenever a greater degree of care is required, it becomes necessary to replace the object convention with the sign convention, which presumes to take for granted only what can be obvious to all observers, namely, the phenomenal appearances and temporal occurrences of objectified states of systems.  To be sure, these modulations of media are still presented as signs, but only potentially as signs of other things.  It goes with the territory of the formal language context to constantly check the inveterate impulses of the literate mind, to reflect on its automatic reflex toward meaning, to inhibit its uncontrolled operation, and to pause long enough in the rush to judgment to question whether its constant presumption of a motive is itself innocent.
 +
 +
In order to deal with these issues of discourse analysis in an explicit way, it is necessary to have in place a technical notation for marking the very kinds of interpretive assumptions that normally go unmarked.  Thus, I will describe a set of devices for annotating certain kinds of interpretive contingencies, namely, the ''discourse analysis frames'' or the ''global interpretive frames'' that may be operative at any given moment in a particular context of discussion.
 +
 +
To mark a context of discussion where a particular set <math>J\!</math> of interpretive conventions is being maintained, I use labeled brackets of the following two forms:  &ldquo;unitary&rdquo;, as <math>\{ J | \ldots | J \},\!</math> or &ldquo;divided&rdquo;, as <math>\{ J | \ldots | \ldots | J \}.\!</math>  The unitary form encloses a context of discussion by delimiting a range of text whose reading is subject to the interpretive constraints <math>J.\!</math>  The divided form specifies the objects, signs, and interpretive information in accord with which a species of discussion is generated.  Labeled brackets enclosing contexts can be nested in their scopes, with interpretive data on each outer envelope applying to every inclusion.  Labeled brackets arranging the ''conversation pieces'' or the ''generators and relations'' of a topic can lead to discussions that spill outside their frames, and thus are permitted to constitute overlapping contexts.
 +
 +
For the present, I will consider two types of interpretive parameters to be used as indices of labeled brackets.
 +
 +
<ol style="list-style-type:decimal">
 +
 +
<li>Names of interpreters or other references to context can be used to indicate the provenance of the objects and signs that make up the assorted contents of brackets.  On occasion, I will use the first person singular pronoun to signify the immediate context of informal discussion, as in <math>\{ I | \ldots | I \},\!</math> but more often than not this context goes unmarked.</li>
 +
 +
<li>Two other modifiers can be used to toggle between the options of the object convention, more common in casual or ordinary contexts, and the sign convention, more useful in formal or sign theoretic contexts.</li>
 +
 +
<ol style="list-style-type:lower-alpha">
 +
 +
<li>
 +
<p>The brackets <math>\{ o | \ldots | o \}\!</math> mark a context of informal language use or ordinary discussion, where the object convention applies.  To specify the elements of a sign relation under these conditions, I use a form of presentation like the following:</p>
 +
 +
{| align="center" cellpadding="8" width="90%"
 +
|
 +
<math>\{ o |~ \text{A}, \text{B} ~|||~ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} ~| o \}.\!</math>
 +
|}
 +
 +
<p>Here, the names of objects are placed on the left side and the names of signs on the right side of the central divide, and the outer brackets stipulate that the object convention is in force throughout the discussion of a sign relation that is generated on these elements.</p></li>
 +
 +
<li>
 +
<p>The brackets <math>\{ s | \ldots | s \}\!</math> mark a context of formal language use or controlled discussion, where the sign convention applies.  To specify the elements of a sign relation in this case, I use a form like:</p>
 +
 +
{| align="center" cellpadding="8" width="90%"
 +
|
 +
<math>\{ s |~ [\text{A}], [\text{B}] ~|||~ \text{A}, \text{B}, \text{i}, \text{u} ~| s \}.</math>
 +
|}
 +
 +
<p>Again, expressions for objects are placed on the left and expressions of signs on the right, but formal language conventions are now invoked to let the alphabet letters and the lexical items of a formal vocabulary stand for themselves, and denotation brackets <math>{}^{\backprime\backprime} [ \dots ] {}^{\prime\prime}\!</math> are placed around signs to indicate the corresponding objects, when they exist.</p></li>
 +
 +
</ol></ol>
 +
 +
When the information carried by labeled brackets becomes more involved and more extensive, a set of convenient abbreviations and suggestions for &ldquo;pretty printing&rdquo; can be followed.  When the bracket labels become too long to bother repeating, I will leave the last label blank or use ditto marks, as with <math>\{ a, b, c ~|~ \ldots ~| {}^{\prime\prime} \}.\!</math>  When it is necessary to break labeled brackets over several lines, multiple dividers and dittos can be used to fill out corresponding columns, as in the following text:
 +
 +
{| align="center" cellpadding="8" width="90%"
 +
|
 +
<math>\begin{array}{*{12}{c}}
 +
\{ & I & , & o & | & \text{A} & , & \text{B} & & & &
 +
\\
 +
| & | & | & | & | &
 +
{}^{\backprime\backprime} \text{A} {}^{\prime\prime} & , &
 +
{}^{\backprime\backprime} \text{B} {}^{\prime\prime} & , &
 +
{}^{\backprime\backprime} \text{i} {}^{\prime\prime} & , &
 +
{}^{\backprime\backprime} \text{u} {}^{\prime\prime}
 +
\\
 +
| & {}^{\prime\prime} & {}^{\prime\prime} & {}^{\prime\prime} & \} & & & & & & &
 +
\end{array}</math>
 +
|}
 +
 +
A notation for discourse analysis ought to find a crucial test of its usefulness in whether it can help to disclose structural properties of interpretive frameworks that would otherwise escape the attention due.  If the dimensions of interpretive choice that are represented by these devices are to serve a useful function, then &hellip;
 +
 +
Although these devices for discourse analysis are bound to seem a bit ''ad hoc'' at this point, they have been designed with a sign relational bootstrap in mind, that is, with a view to being formalized and recognized as a species within the domain of sign relations itself, where this is the very domain that is laid out as their field of application.
 +
 +
One note of caution may help to prevent a common misunderstanding.  It is futile to imagine that any system of interpretive markers for discourse can become totally self sufficient, like the Worm Uroboros, determining all aspects of interpretation and eliminating all ambiguity.  The ultimate appeal of signs, and signs upon signs, is always to an intelligent interpreter, a reader who knows there are more interpretive choices to make than could ever be surrendered to signs, and whose free responsibility to appropriate interpretations cannot be abdicated to any text or abridged by any gloss on it, no matter how fit or finished.
 +
 +
In a sense, at least at first, nothing is being created that could not have been noticed without signs.  It is merely that actions are being articulated that were not articulated before, and hopefully in ways that make transient insights easier to remember and reuse on new occasions.  Instead, the requirement here is to devise a language, the marks of which can reflect the ambient light of observation on its own process.  It is not unusual to succeed at this in artificial environments crafted especially for the purpose, but to achieve the critical angle ''in vivo'', in the living context of a natural language, takes more art.
 +
 +
===6.49. Combinations of Sign Relations===
 +
 +
At a point like this in the development of a formal subject matter, it is customary to introduce elements of a logical calculus that can be used to describe relevant aspects of the formal structures involved and to expedite reasoning about their manifold combinations and decompositions.  I will hold off from doing this for sign relations in any formal way at present.  Instead, I consider the informal requirements and the foreseeable ends that a suitable calculus for sign relations might be expected to meet, and I present as tentative alternatives a few different ways of proceeding to formalize these intentions.
 +
 +
The first order of business in the &ldquo;comparative anatomy&rdquo; and &ldquo;developmental biology&rdquo; of sign relations is to undertake a pair of closely related tasks:  (1) to examine the structural articulation of highly complex sign relations in terms of the primitive constituents that are found available, and (2) to explain the functional genesis of formal (that is, reflectively considered and critically regarded) sign relations as they naturally arise within the informal context of representational and communicational activities.
 +
 +
Converting to a political metaphor, how does the &ldquo;republic&rdquo; constituted by a sign relation &mdash; the representational community of agents invested with a congeries of legislative, executive, and interpretive powers, employing a consensual body of conventional languages, encompassing a commonwealth of comprehensible meanings, diversely but flexibly manifested in the practical administration of abiding and shared representations &mdash; how does all of this first come into being?
 +
 +
&hellip; and their development from primitive/ rudimentary to highly structured &hellip;
 +
 +
The grasp of the discussion between <math>\text{A}\!</math> and <math>\text{B}\!</math> that is represented in their separate sign relations can best be described as fragmentary.  It fails to capture what everyone knows <math>\text{A}\!</math> and <math>\text{B}\!</math> would know about each other's language use.
 +
 +
How can the fragmentary system of interpretation (SOI) constituted by the juxtaposition of individual sign relations <math>L(\text{A})\!</math> and <math>L(\text{B})\!</math> be combined or developed into a new SOI that represents what agents like <math>\text{A}\!</math> and <math>\text{B}\!</math> are sure to know about each other's language use?  In order to make it clear that this is a non-trivial question, and in the process to illustrate different ways of combining sign relations, I begin by considering a couple of obvious suggestions for their integration that immediate reflection will show to miss the mark.
 +
 +
The first thing to try is the set-theoretic union of the sign relations.  This leads to a &ldquo;confused&rdquo; or &ldquo;confounded&rdquo; combination of the component sign relations.  For example, the sign relation defined as <math>L_\text{C} = L_\text{A} \cup L_\text{B}\!</math> is shown in Table&nbsp;86.  Interpreted as a transition digraph on the four points of the syntactic domain <math>S = \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \},\!</math> the sign relation <math>L_\text{C}\!</math> specifies the following behavior for the conduct of its interpreter:
 +
 +
# <math>\text{A}\!\cdot\!L_\text{C}\!</math> has a sling at each point of <math>\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!</math> and two-way arcs on the pairs <math>\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \}\!</math> and <math>\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}.\!</math>
 +
# <math>\text{B}\!\cdot\!L_\text{C}\!</math> has a sling at each point of <math>\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!</math> and two-way arcs on the pairs <math>\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \}\!</math> and <math>\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}.\!</math>
 +
 +
These sub-relations do not form equivalence relations on the relevant sets of signs.  If closed up under transitive compositions, then <math>\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!</math> are all equivalent in the presence of object <math>\text{A},\!</math> but <math>\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!</math> are all equivalent in the presence of object <math>\text{B}.\!</math>  This may accurately represent certain types of political thinking, but it does not constitute the kind of sign relation that is wanted here.
 +
 +
<br>
 +
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
 +
|+ style="height:30px" | <math>\text{Table 86.} ~~ \text{Confounded Sign Relation} ~ L_\text{C} = L_\text{A} \cup L_\text{B} ~ \!</math>
 +
|- style="height:40px; background:#f0f0ff"
 +
| width="33%" | <math>\text{Object}\!</math>
 +
| width="33%" | <math>\text{Sign}\!</math>
 +
| width="33%" | <math>\text{Interpretant}\!</math>
 +
|-
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
\text{A}
 +
\\
 +
\text{A}
 +
\\
 +
\text{A}
 +
\\
 +
\text{A}
 +
\\
 +
\text{A}
 +
\\
 +
\text{A}
 +
\\
 +
\text{A}
 +
\end{matrix}</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{}^{\backprime\backprime} \text{A} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{A} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{A} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{i} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{i} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{u} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{u} {}^{\prime\prime}
 +
\end{matrix}</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{}^{\backprime\backprime} \text{A} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{i} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{u} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{A} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{i} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{A} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{u} {}^{\prime\prime}
 +
\end{matrix}</math>
 +
|-
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
\text{B}
 +
\\
 +
\text{B}
 +
\\
 +
\text{B}
 +
\\
 +
\text{B}
 +
\\
 +
\text{B}
 +
\\
 +
\text{B}
 +
\\
 +
\text{B}
 +
\end{matrix}</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{}^{\backprime\backprime} \text{B} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{B} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{B} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{i} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{i} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{u} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{u} {}^{\prime\prime}
 +
\end{matrix}</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{}^{\backprime\backprime} \text{B} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{i} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{u} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{B} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{i} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{B} {}^{\prime\prime}
 +
\\
 +
{}^{\backprime\backprime} \text{u} {}^{\prime\prime}
 +
\end{matrix}</math>
 +
|}
 +
 +
<br>
 +
 +
Reflecting on this disappointing experience with using simple unions to combine sign relations, it appears that some type of indexed union or categorical co-product might be demanded.  Table&nbsp;87 presents the results of taking the disjoint union <math>\textstyle L_\text{D} = L_\text{A} \coprod L_\text{B}\!</math> to constitute a new sign relation.
 +
 +
<br>
 +
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:80%"
 +
|+ style="height:30px" | <math>\text{Table 87.} ~~ \text{Disjointed Sign Relation} ~ L_\text{D} = L_\text{A} \textstyle\coprod L_\text{B}\!</math>
 +
|- style="height:40px; background:#f0f0ff"
 +
| width="33%" | <math>\text{Object}\!</math>
 +
| width="33%" | <math>\text{Sign}\!</math>
 +
| width="33%" | <math>\text{Interpretant}\!</math>
 +
|-
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
\text{A}_\text{A}
 +
\\
 +
\text{A}_\text{A}
 +
\\
 +
\text{A}_\text{A}
 +
\\
 +
\text{A}_\text{A}
 +
\end{matrix}\!</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A}
 +
\end{matrix}\!</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A}
 +
\end{matrix}\!</math>
 +
|-
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
\text{A}_\text{B}
 +
\\
 +
\text{A}_\text{B}
 +
\\
 +
\text{A}_\text{B}
 +
\\
 +
\text{A}_\text{B}
 +
\end{matrix}\!</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B}
 +
\end{matrix}\!</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B}
 +
\end{matrix}\!</math>
 +
|-
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
\text{B}_\text{A}
 +
\\
 +
\text{B}_\text{A}
 +
\\
 +
\text{B}_\text{A}
 +
\\
 +
\text{B}_\text{A}
 +
\end{matrix}\!</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A}
 +
\end{matrix}\!</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A}
 +
\\
 +
{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A}
 +
\end{matrix}\!</math>
 +
|-
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
\text{B}_\text{B}
 +
\\
 +
\text{B}_\text{B}
 +
\\
 +
\text{B}_\text{B}
 +
\\
 +
\text{B}_\text{B}
 +
\end{matrix}\!</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B}
 +
\end{matrix}\!</math>
 +
| valign="bottom" |
 +
<math>\begin{matrix}
 +
{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B}
 +
\\
 +
{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B}
 +
\end{matrix}\!</math>
 +
|}
 +
 +
<br>
 +
 +
===6.50. Revisiting the Source===
 +
 +
'''&hellip;'''
  
 
==Deletions==
 
==Deletions==
Line 370: Line 774:
 
|}
 
|}
  
and the semiotic partition:  <math>\{ \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \} , \{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} \}\!</math>.
+
and the semiotic partition:  <math>\{ \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \} , \{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} \}.\!</math>
  
 
In contrast, the SER for interpreter <math>\text{B}\!</math> yields the semiotic equations:
 
In contrast, the SER for interpreter <math>\text{B}\!</math> yields the semiotic equations:
Line 394: Line 798:
 
|}
 
|}
  
and the semiotic partition:  <math>\{ \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} , \{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \} \}\!</math>.
+
and the semiotic partition:  <math>\{ \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} , \{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \} \}.\!</math>
  
 
<br>
 
<br>

Latest revision as of 18:21, 28 August 2014

MathJaX SuX ❢❢❢

NOTE. I am putting the last few Sections of Part 6 here until I can figure out why the article page is not rendering the full amount of edit page text that it used to show.

6. Reflective Interpretive Frameworks (cont.)

6.47. Mutually Intelligible Codes

Before this complex of relationships can be formalized in much detail, I must introduce linguistic devices for generating higher order signs, used to indicate other signs, and situated signs, indexed by the names of their users, their contexts of use, and other types of information incidental to their usage in general. This leads to the consideration of systems of interpretation (SOIs) that maintain recursive mechanisms for naming everything within their purview. This “nominal generosity” gives them a new order of generative capacity, producing a sufficient number of distinctive signs to name all the objects and then name the names that are needed in a given discussion.

Symbolic systems for quoting inscriptions and ascribing quotations are associated in metamathematics with gödel numberings of formal objects, enumerative functions that provide systematic but ostensibly arbitrary reference numbers for the signs and expressions in a formal language. Assuming these signs and expressions denote anything at all, their formal enumerations become the codes of formal objects, just as programs taken literally are code names for certain mathematical objects known as computable functions. Partial forms of specification notwithstanding, these codes are the only complete modes of representation that formal objects can have in the medium of mechanical activity.

In the dialogue of \(\text{A}\!\) and \(\text{B}\!\) there happens to be an exact coincidence between signs and states. That is, the states of the interpretive systems \(\text{A}\!\) and \(\text{B}\!\) are not distinguished from the signs in \(S\!\) that are imagined to be mediating, moment by moment, the attentions of the interpretive agents \(\text{A}\!\) and \(\text{B}\!\) toward their respective objects in \(O.\!\) So the question arises: Is this identity bound to be a general property of all useful sign relations, or is it only a degenerate feature occurring by chance or unconscious design in the immediate example?

To move toward a resolution of this question I reason as follows. In one direction, it seems obvious that a sign in use (SIU) by a particular interpreter constitutes a component of that agent's state. In other words, the very notion of an identifiable SIU refers to numerous instances of a particular interpreter's state that share in the abstract property of being such instances, whether or not anyone can give a more concise or illuminating characterization of the concept under which these momentary states are gathered. Conversely, it is at least conceivable that the whole state of a system, constituting its transitory response to the entirety of its environment, history, and goals, can be interpreted as a sign of something to someone. In sum, there remains an outside chance of signs and states being precisely the same things, since nothing precludes the existence of an interpretive framework (IF) that could make it so.

Still, if the question about the distinction or coincidence between signs and states is restricted to the domains where existential realizations are conceivable, no matter whether in biological or computational media, then the prerequisites of the task become more severe, due to the narrower scope of materials that are admitted to answer them. In focusing on this arena the problem is threefold:

  1. The crucial point is not just whether it is possible to imagine an ideal SOI, an external perspective or an independent POV, for which all states are signs, but whether this is so for the prospective SOI of the very agent that passes through these states.
  2. To what extent can the transient states and persistent conduct of each agent in a community of interpretation take on a moderately public and objective aspect in relation to the other participants?
  3. How far in this respect, in the common regard for this species of outward demeanor, can each agent's behavior act as a sign of genuine objects in the eyes of other interpreters?

The special task of a nuanced hermeneutic approach to computational interpretation is to realize the relativity of all formal codes to their formal coders, and to seek ways of facilitating mutual intelligibility among interpreters whose internal codes can be thoroughly private, synchronistically keyed to external events, and even a bit idiosyncratic.

Ultimately, working through this maze of “meta” questions, as posed on the tentative grounds of the present project, leads to a question about the logical reference frames or metamathematical coordinate systems that are supposed to distinguish “objective” from “symbolic” entities and are imagined to discriminate a range of gradations along their lines. The question is: Whether any gauge of objectivity or scale of virtuality has invariant properties discoverable by all independent interpreters, or whether all is vanity and inane relativism, and everything concerning a subjective point of view is sheer caprice?

Thus, the problem of mutual intelligibility turns on the question of common significance: How can there be signs that are truly public, when the most natural signs that distinct agents can know, their own internal states, have no guarantee and very little likelihood of being related in systematically fathomable ways? As a partial answer to this, I am willing to contemplate certain forms of pre-established harmony, like the common evolution of a biological species or the shared culture of an interpretive community, but my experience has been that harmony, once established, quickly corrupts unless active means are available to maintain it. So there still remains the task of identifying these means. With or without the benefit of a prior consensus, or the assumption of an initial but possibly fragile equilibrium, an explanation of robust harmony must detail the modes of maintaining communication that enable coordinated action to persist in the meanest of times.

The formal character of these questions, in the potential complexities that can be forced on contemplation in the pursuit of their answers, is independent of the species of interpreters that are chosen for the termini of comparison, whether person to person, person to computer, or computer to computer. As always, the truth of this kind of thesis is formal, all too formal. What it brings is a new refrain of an old motif: Are there meaningful, if necessarily formal series of analogies that can be strung from the patterns of whizzing electrons and humming protons, whose controlled modes of collective excitation form and inform the conducts of computers, all the way to the rather different patterns of wizened electrons and humbled protons, whose deliberate energies of communal striving substantiate the forms of life known to be intelligible?

A full consideration of the geometries available for the spaces in which these levels of reflective abstraction are commonly imagined to reside leads to the conclusion that familiar distinctions of “top down” versus “bottom up” are being taken for granted in an arena that has not even been established to be orientable. Thus, it needs to be recognized that the distinction between objects and signs is relative to a definite system of interpretation. The pragmatic theory of signs is designed, in part, precisely to deal with the circumstance that thoroughly objective states of systems can be signs of each other, undermining any pretended distinction between objects and signs that one might propose to draw on essential grounds.

From now on, I will reuse the ancient term gnomon in a technical sense to refer to the gödel numbers or code names of formal objects. In other words, a gnomon is a gödel numbering or enumeration function that maps a domain of objects into a domain of signs, \(\mathrm{Gno} : O \to S.\!\) When the syntactic domain \(S\!\) is contained within the object domain \(O,\!\) then the part of the gnomon that maps \(S\!\) into \(S,\!\) providing names for signs and expressions, is usually regarded as a quoting function.

In the pluralistic contexts that go with pragmatic theories of signs, it is no longer entirely appropriate to refer to the gnomon of any object. At any moment of discussion, I can only have so-and-so's gnomon or code word for each thing under the sun. Thus, apparent references to a uniquely determined gnomon only make sense if taken as enthymemic invocations of the ordinary context and all that is comprehended to be implied in it, promising to convert tacit common sense into definite articulations of what is understood. Actually achieving this requires each elliptic reference to the gnomon to be explicitly grounded in the context of informal discussion, interpreted with respect to the conventional basis of understanding assumed in it, and relayed to the indexing function taken for granted by all parties to it.

In computational terms, this brand of pluralism means that neither the gnomon nor the quoting function that forms a part of it can be viewed as well-defined unless it is indexed, explicitly or implicitly, by the name of a particular interpreter. I will use either one of the equivalent notations \({}^{\backprime\backprime} \mathrm{Gno}_i (x) {}^{\prime\prime}\!\) or \({}^{\backprime\backprime\langle} x, i {}^{\rangle\prime\prime}\!\) to indicate the gnomon of the object \(x\!\) with respect to the interpreter \(i.\!\) The value \(\mathrm{Gno}_i (x) = {}^{\langle} x, i {}^{\rangle} \in S\!\) is the nominal sign in use or the name in use (NIU) of the object \(x\!\) with respect to the interpreter \(i,\!\) and thus it constitutes a component of \(i\!\)'s state.

In the special case where \(x\!\) is a sign or expression in the syntactic domain, then \(\mathrm{Gno}_i (x) = {}^{\langle} x, i {}^{\rangle}\!\) is tantamount to the quotation of \(x\!\) by and for the use of the interpreter \(i,\!\) in short, the nominal sign to \(i\!\) that makes \(x\!\) an object for \(i.\!\) For signs and expressions, it is usually only the quoting function that makes them objects. But nothing is an object in any sense for an interpreter unless it is an object of a sign relation for that interpreter. Therefore, …

If it is now asked what measure of invariant understanding can be enjoyed by diverse parties of interpretive agents, then the discussion has come upon an issue with a familiar echo in mathematical analysis. The organization of many local coordinate frames into systems capable of supporting communicative references to relatively “objective” objects is usually handled by means of the concept of a manifold. Therefore, the analogous task that is suggested for this project is to arrive at a workable definition of sign relational manifolds.

The discrete nature of the \(\text{A}\!\) and \(\text{B}\!\) dialogue renders moot the larger share of issues of interest in continuous and differentiable manifolds. However, it is still possible to get things moving in this direction by looking at simple structural analogies that connect the pragmatic theory of sign relations with the basic notions of analysis on manifolds.

6.48. Discourse Analysis : Ways and Means

Before the discussion of the \(\text{A}\!\) and \(\text{B}\!\) dialogue can proceed to richer veins of semantic structure it will be necessary to extract the relevant traces of embedded sign relations from their environments of informally interpreted syntax.

On the substantive front, sign relations serving as raw materials of discourse need to be refined and their content assayed, but first their identifying signatures must be sounded out, carved out, and lifted from their embroiling inclusions in the dense strata of obscure intuitions that sediment ordinary discussion. On the instrumental front, sign relations serving as primitive tools of discourse analysis need to be identified and improved by a deliberate examination of their designs and purposes.

So far, the models and methods made available to formal treatment were borrowed outright, with little hesitation and less recognition, from the context of casual discussion. Thus, these materials and mechanisms have come to the threshold of critical reflection already in play, devoid of concern for the presuppositions and consequences associated with their use, and only belatedly turned to the effortful work and tedious formalities of self-conscious exposition.

To reflect on the properties of complex and higher order sign relations with any degree of clarity it is necessary to arrange a clearer field of investigation and a less cluttered staging area for analytic work than is commonly provided. Habitual processes of interpretation that typically operate as automatic routines and uncritical defaults in the informal context of discussion have to be selectively inhibited, slowed down, and critically examined as objective possibilities, instead of being taken for granted as absolute necessities.

In other words, an apparatus for critical reflection does not merely add more mirrors to the kaleidoscopic fun-house of interpretive discourse, but it provides transient moments of equanimity, or balanced neutrality, and a moderately detached perspective on alternative points of view. A scope so limited does not by any means grant a god's eye view, but permits a sufficient quantity of light to consider how the original array of sights and reflections might have been created otherwise.

Ordinarily, the extra degree of attention to syntax that is needed for critical reflection on interpretive processes is called into play by means of syntactic operators and diacritical devices acting at the level of individual signs and elementary expressions. For example, quotation marks are used to force one type of “semantic ascent”, causing signs to be treated as objects and marking points of interpretive shift as they occur in the syntactic medium. But these operators and devices must be symbolized, and these symbols must be interpreted. Consequently, there is no way to avoid the invocation of a cohering interpretive framework, one that needs to be specialized for analytic purposes.

The best way to achieve the desired type of reflective capacity is by attaching a parameter to the interpretive framework used as an instrument of formal study, specifying certain choices or interpretive presumptions that affect the entire context of discussion. The aesthetic distance needed to arrive at a formal perspective on sign relations is maintained, not by jury-rigging ordinary discussion with locally effective syntactic devices, but by asking the reader to consider certain dimensions of parametric variation in the global interpretive frameworks used to comprehend the sign relations under study.

The interpretive parameter of paramount importance to this work is one that is critical to reflection. It can be presented as a choice between two alternative conventions, affecting the way one reflexively regards each sign in a text: (1) as a sign provoking interest only in passing, exchanged for the sake of a meaningful object it is always taken for granted to have, or (2) as a sign comprising an interest in and of itself, a state of a system or a modification of a medium that can signify an external value but does not necessarily denote anything else at all. I will name these options for responding to signs according to the aspects of character that are most appreciated in their net effects, whether signs for the sake of objects, or signs for their own sake, respectively.

The first option I call the object convention, recognizing it as the natural default of informal language use. In the ordinary language context it is the automatic assumption that signs and expressions are intended to denote something external to themselves, and even though it is quite obvious to all interpreters that the medium is filled with the appearances of signs and not with the objects themselves, this fact passes for little more than transitory interest in the rush to cash out tokens for their indicated values.

The object convention, as appropriate to an introduction that needs to begin in the context of ordinary discussion, is the parametric choice that was left in force throughout the treatment of the A and B example. Doing things this way is like trying to roller skate in a buffalo herd, that is, it attempts to formalize a fragment of discussion on a patchwork of local scales without interrupting the automatic routines and default assumptions that prevail on a global basis in the informal context. Ultimately, one cannot avoid stumbling over the hoofprints \(( {}^{\backprime\backprime} \, {}^{\prime\prime} )\!\) of overly cited and opaquely enthymematic textual deposits.

The second option I call the sign convention, observing it to be the treatment of choice in programming and formal language studies. In the formal language context it is necessary to consider the possibility that not all signs and expressions are assured to denote or even connote much of anything at all. This danger is amplified in computational frameworks where it resonates with a related theme, that not all programs are guaranteed to terminate normally with a definite result. In order to deal with these eventualities, a more cautious approach to sign relations is demanded to cover the risk of generating nonsense, in other words, to guard against degenerate forms of sign relations that fail to serve any significant purpose in communication or inquiry.

Whenever a greater degree of care is required, it becomes necessary to replace the object convention with the sign convention, which presumes to take for granted only what can be obvious to all observers, namely, the phenomenal appearances and temporal occurrences of objectified states of systems. To be sure, these modulations of media are still presented as signs, but only potentially as signs of other things. It goes with the territory of the formal language context to constantly check the inveterate impulses of the literate mind, to reflect on its automatic reflex toward meaning, to inhibit its uncontrolled operation, and to pause long enough in the rush to judgment to question whether its constant presumption of a motive is itself innocent.

In order to deal with these issues of discourse analysis in an explicit way, it is necessary to have in place a technical notation for marking the very kinds of interpretive assumptions that normally go unmarked. Thus, I will describe a set of devices for annotating certain kinds of interpretive contingencies, namely, the discourse analysis frames or the global interpretive frames that may be operative at any given moment in a particular context of discussion.

To mark a context of discussion where a particular set \(J\!\) of interpretive conventions is being maintained, I use labeled brackets of the following two forms: “unitary”, as \(\{ J | \ldots | J \},\!\) or “divided”, as \(\{ J | \ldots | \ldots | J \}.\!\) The unitary form encloses a context of discussion by delimiting a range of text whose reading is subject to the interpretive constraints \(J.\!\) The divided form specifies the objects, signs, and interpretive information in accord with which a species of discussion is generated. Labeled brackets enclosing contexts can be nested in their scopes, with interpretive data on each outer envelope applying to every inclusion. Labeled brackets arranging the conversation pieces or the generators and relations of a topic can lead to discussions that spill outside their frames, and thus are permitted to constitute overlapping contexts.

For the present, I will consider two types of interpretive parameters to be used as indices of labeled brackets.

  1. Names of interpreters or other references to context can be used to indicate the provenance of the objects and signs that make up the assorted contents of brackets. On occasion, I will use the first person singular pronoun to signify the immediate context of informal discussion, as in \(\{ I | \ldots | I \},\!\) but more often than not this context goes unmarked.
  2. Two other modifiers can be used to toggle between the options of the object convention, more common in casual or ordinary contexts, and the sign convention, more useful in formal or sign theoretic contexts.
    1. The brackets \(\{ o | \ldots | o \}\!\) mark a context of informal language use or ordinary discussion, where the object convention applies. To specify the elements of a sign relation under these conditions, I use a form of presentation like the following:

      \(\{ o |~ \text{A}, \text{B} ~|||~ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} ~| o \}.\!\)

      Here, the names of objects are placed on the left side and the names of signs on the right side of the central divide, and the outer brackets stipulate that the object convention is in force throughout the discussion of a sign relation that is generated on these elements.

    2. The brackets \(\{ s | \ldots | s \}\!\) mark a context of formal language use or controlled discussion, where the sign convention applies. To specify the elements of a sign relation in this case, I use a form like:

      \(\{ s |~ [\text{A}], [\text{B}] ~|||~ \text{A}, \text{B}, \text{i}, \text{u} ~| s \}.\)

      Again, expressions for objects are placed on the left and expressions of signs on the right, but formal language conventions are now invoked to let the alphabet letters and the lexical items of a formal vocabulary stand for themselves, and denotation brackets \({}^{\backprime\backprime} [ \dots ] {}^{\prime\prime}\!\) are placed around signs to indicate the corresponding objects, when they exist.

When the information carried by labeled brackets becomes more involved and more extensive, a set of convenient abbreviations and suggestions for “pretty printing” can be followed. When the bracket labels become too long to bother repeating, I will leave the last label blank or use ditto marks, as with \(\{ a, b, c ~|~ \ldots ~| {}^{\prime\prime} \}.\!\) When it is necessary to break labeled brackets over several lines, multiple dividers and dittos can be used to fill out corresponding columns, as in the following text:

\(\begin{array}{*{12}{c}} \{ & I & , & o & | & \text{A} & , & \text{B} & & & & \\ | & | & | & | & | & {}^{\backprime\backprime} \text{A} {}^{\prime\prime} & , & {}^{\backprime\backprime} \text{B} {}^{\prime\prime} & , & {}^{\backprime\backprime} \text{i} {}^{\prime\prime} & , & {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ | & {}^{\prime\prime} & {}^{\prime\prime} & {}^{\prime\prime} & \} & & & & & & & \end{array}\)

A notation for discourse analysis ought to find a crucial test of its usefulness in whether it can help to disclose structural properties of interpretive frameworks that would otherwise escape the attention due. If the dimensions of interpretive choice that are represented by these devices are to serve a useful function, then …

Although these devices for discourse analysis are bound to seem a bit ad hoc at this point, they have been designed with a sign relational bootstrap in mind, that is, with a view to being formalized and recognized as a species within the domain of sign relations itself, where this is the very domain that is laid out as their field of application.

One note of caution may help to prevent a common misunderstanding. It is futile to imagine that any system of interpretive markers for discourse can become totally self sufficient, like the Worm Uroboros, determining all aspects of interpretation and eliminating all ambiguity. The ultimate appeal of signs, and signs upon signs, is always to an intelligent interpreter, a reader who knows there are more interpretive choices to make than could ever be surrendered to signs, and whose free responsibility to appropriate interpretations cannot be abdicated to any text or abridged by any gloss on it, no matter how fit or finished.

In a sense, at least at first, nothing is being created that could not have been noticed without signs. It is merely that actions are being articulated that were not articulated before, and hopefully in ways that make transient insights easier to remember and reuse on new occasions. Instead, the requirement here is to devise a language, the marks of which can reflect the ambient light of observation on its own process. It is not unusual to succeed at this in artificial environments crafted especially for the purpose, but to achieve the critical angle in vivo, in the living context of a natural language, takes more art.

6.49. Combinations of Sign Relations

At a point like this in the development of a formal subject matter, it is customary to introduce elements of a logical calculus that can be used to describe relevant aspects of the formal structures involved and to expedite reasoning about their manifold combinations and decompositions. I will hold off from doing this for sign relations in any formal way at present. Instead, I consider the informal requirements and the foreseeable ends that a suitable calculus for sign relations might be expected to meet, and I present as tentative alternatives a few different ways of proceeding to formalize these intentions.

The first order of business in the “comparative anatomy” and “developmental biology” of sign relations is to undertake a pair of closely related tasks: (1) to examine the structural articulation of highly complex sign relations in terms of the primitive constituents that are found available, and (2) to explain the functional genesis of formal (that is, reflectively considered and critically regarded) sign relations as they naturally arise within the informal context of representational and communicational activities.

Converting to a political metaphor, how does the “republic” constituted by a sign relation — the representational community of agents invested with a congeries of legislative, executive, and interpretive powers, employing a consensual body of conventional languages, encompassing a commonwealth of comprehensible meanings, diversely but flexibly manifested in the practical administration of abiding and shared representations — how does all of this first come into being?

… and their development from primitive/ rudimentary to highly structured …

The grasp of the discussion between \(\text{A}\!\) and \(\text{B}\!\) that is represented in their separate sign relations can best be described as fragmentary. It fails to capture what everyone knows \(\text{A}\!\) and \(\text{B}\!\) would know about each other's language use.

How can the fragmentary system of interpretation (SOI) constituted by the juxtaposition of individual sign relations \(L(\text{A})\!\) and \(L(\text{B})\!\) be combined or developed into a new SOI that represents what agents like \(\text{A}\!\) and \(\text{B}\!\) are sure to know about each other's language use? In order to make it clear that this is a non-trivial question, and in the process to illustrate different ways of combining sign relations, I begin by considering a couple of obvious suggestions for their integration that immediate reflection will show to miss the mark.

The first thing to try is the set-theoretic union of the sign relations. This leads to a “confused” or “confounded” combination of the component sign relations. For example, the sign relation defined as \(L_\text{C} = L_\text{A} \cup L_\text{B}\!\) is shown in Table 86. Interpreted as a transition digraph on the four points of the syntactic domain \(S = \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \},\!\) the sign relation \(L_\text{C}\!\) specifies the following behavior for the conduct of its interpreter:

  1. \(\text{A}\!\cdot\!L_\text{C}\!\) has a sling at each point of \(\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!\) and two-way arcs on the pairs \(\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \}\!\) and \(\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}.\!\)
  2. \(\text{B}\!\cdot\!L_\text{C}\!\) has a sling at each point of \(\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!\) and two-way arcs on the pairs \(\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \}\!\) and \(\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}.\!\)

These sub-relations do not form equivalence relations on the relevant sets of signs. If closed up under transitive compositions, then \(\{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!\) are all equivalent in the presence of object \(\text{A},\!\) but \(\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!\) are all equivalent in the presence of object \(\text{B}.\!\) This may accurately represent certain types of political thinking, but it does not constitute the kind of sign relation that is wanted here.


\(\text{Table 86.} ~~ \text{Confounded Sign Relation} ~ L_\text{C} = L_\text{A} \cup L_\text{B} ~ \!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


Reflecting on this disappointing experience with using simple unions to combine sign relations, it appears that some type of indexed union or categorical co-product might be demanded. Table 87 presents the results of taking the disjoint union \(\textstyle L_\text{D} = L_\text{A} \coprod L_\text{B}\!\) to constitute a new sign relation.


\(\text{Table 87.} ~~ \text{Disjointed Sign Relation} ~ L_\text{D} = L_\text{A} \textstyle\coprod L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A}_\text{A} \\ \text{A}_\text{A} \\ \text{A}_\text{A} \\ \text{A}_\text{A} \end{matrix}\!\)

\(\begin{matrix} {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A} \end{matrix}\!\)

\(\begin{matrix} {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{A} \end{matrix}\!\)

\(\begin{matrix} \text{A}_\text{B} \\ \text{A}_\text{B} \\ \text{A}_\text{B} \\ \text{A}_\text{B} \end{matrix}\!\)

\(\begin{matrix} {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B} \end{matrix}\!\)

\(\begin{matrix} {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{B} \end{matrix}\!\)

\(\begin{matrix} \text{B}_\text{A} \\ \text{B}_\text{A} \\ \text{B}_\text{A} \\ \text{B}_\text{A} \end{matrix}\!\)

\(\begin{matrix} {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A} \end{matrix}\!\)

\(\begin{matrix} {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{A} \\ {{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}_\text{A} \end{matrix}\!\)

\(\begin{matrix} \text{B}_\text{B} \\ \text{B}_\text{B} \\ \text{B}_\text{B} \\ \text{B}_\text{B} \end{matrix}\!\)

\(\begin{matrix} {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B} \end{matrix}\!\)

\(\begin{matrix} {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}_\text{B} \\ {{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}_\text{B} \end{matrix}\!\)


6.50. Revisiting the Source

Deletions

6.38. Considering the Source

There is one remaining form of useful continuity that can be established between these newly formalized inventions and the ordinary conventions of common practice that are customary to apply in the informal context. Conforming to the ascriptions made above, I revive an old usage for framing interjections and enunciate the quotation \({}^{\backprime\backprime} \text{X} {}^{\prime\prime\text{I}}\!\) as \({}^{\backprime\backprime} \text{X} {}^{\prime\prime} ~ \text{quotha}.\!\) Readers who find this custom too curious for words might consider the twofold origins of inquiry and interpretation, one in the virtue of addressing uncertainty and another in the acknowledgment of surprise.

Fragments

6.19. Examples of Self-Reference

In previous work I developed a version of propositional calculus based on C.S. Peirce's existential graphs and implemented this calculus in computational form as a sentential calculus interpreter. Taking this calculus as a point of departure, I devised a theory of differential extensions for propositional domains that can be used, figuratively speaking, to put universes of discourse “in motion”, in other words, to provide qualitative descriptions of processes taking place in logical spaces. See (Awbrey, 1989 and 1994) for an account of this calculus, documentation of its computer program, and a detailed treatment of differential extensions.

In previous work (Awbrey, 1989) I described a system of notation for propositional calculus based on C.S. Peirce's existential graphs, documented a computer implementation of this formalism, and showed how to provide this calculus with a differential extension that can be used to describe changing universes of discourse. In subsequent work (Awbrey, 1994) the resulting system of differential logic was applied to give qualitative descriptions of change in discrete dynamical systems. This section draws on that earlier work, summarizing the conceptions that are needed to give logical representations of sign relations and recording a few changes of a minor nature in the typographical conventions used.

Abstractly, a domain of propositions is known by the axioms it satisfies. Concretely, one thinks of a proposition as applying to the objects it is true of.

Logically, a domain of properties or propositions is known by the axioms it is subject to. Concretely, a property or proposition is known by the things or situations it is true of. Typically, the signs of properties and propositions are called terms and sentences, respectively.

6.23. Intensional Representations of Sign Relations

In the formalized examples of IRs to be presented in this work, I will keep to the level of logical reasoning that is usually referred to as propositional calculus or sentential logic.

The contrast between ERs and IRs is strongly correlated with another dimension of interest in the study of inquiry, namely, the tension between empirical and rational modes of inquiry.

This section begins the explicit discussion of ERs by taking a second look at the sign relations \(L(\text{A})\!\) and \(L(\text{B}).\!\) Since the form of these examples no longer presents any novelty, this second presentation of \(L(\text{A})\!\) and \(L(\text{B})\!\) provides a first opportunity to introduce some new material. In the process of reviewing this material, it is useful to anticipate a number of incidental issues that are on the point of becoming critical, and to begin introducing the generic types of technical devices that are needed to deal with them.

Therefore, the easiest way to begin an explicit treatment of ERs is by recollecting the Tables of the sign relations \(L(\text{A})\!\) and \(L(\text{B})\!\) and by finishing the corresponding Tables of their dyadic components. Since the form of the sign relations \(L(\text{A})\!\) and \(L(\text{B})\!\) no longer presents any novelty, I can use the second presentation of these examples as a first opportunity to examine a selection of their finer points, previously overlooked.

Starting from this standpoint, the easiest way to begin developing an explicit treatment of ERs is to gather the relevant materials in the forms already presented, to fill out their missing details and expand the abbreviated contents of these forms, and to review their full structures in a more formal light.

Because of the perfect parallelism that the literal coding contrives between individual signs and grammatical categories, this arrangement illustrates not so much a code transformation as a re-interpretation of the original signs under different headings.

6.33. Sign Relational Complexes

I would like to record here, in what is topically the appropriate place, notice of a number of open questions that will have to be addressed if anyone desires to make a consistent calculus out of this link notation. Perhaps it is only because the franker forms of liaison involved in the couple \(a \widehat{~} b\!\) are more subject to the vagaries of syntactic elision than the corresponding bindings of the anglish ligature \((a, b),\!\) but for some reason or other the circumflex character of these diacritical notices are much more liable to suggest various forms of elaboration, including higher order generalizations and information-theoretic partializations of the very idea of \(n\!\)-tuples and sequences.

One way to deal with the problems of partial information …

Relational Complex?

\(L ~=~ L^{(1)} \cup \ldots \cup L^{(k)}\!\)

Sign Relational Complex?

\(L ~=~ L^{(1)} \cup L^{(2)} \cup L^{(3)}\!\)

Linkages can be chained together to form sequences of indications or \(n\!\)-tuples, without worrying too much about the order of collecting terms in the corresponding angle brackets.

\(\begin{matrix} a \widehat{~} b \widehat{~} c & = & (a, b, c) & = & (a, (b, c)) & = & ((a, b), c). \end{matrix}\)

These equivalences depend on the existence of natural isomorphisms between different ways of constructing \(n\!\)-place product spaces, that is, on the associativity of pairwise products, a not altogether trivial result (Mac Lane, CatWorkMath, ch. 7).

Higher Order Indications (HOIs)?

\(\begin{matrix} \widehat{~} x & = & (~, x) & ? \'"`UNIQ-MathJax1-QINU`"' In contrast, the SER for interpreter \(\text{B}\!\) yields the semiotic equations:

  \([{}^{\backprime\backprime} \text{A} {}^{\prime\prime}]_\text{B}\!\) \(=\!\) \([{}^{\backprime\backprime} \text{u} {}^{\prime\prime}]_\text{B}\!\)   \([{}^{\backprime\backprime} \text{B} {}^{\prime\prime}]_\text{B}\!\) \(=\!\) \([{}^{\backprime\backprime} \text{i} {}^{\prime\prime}]_\text{B}\!\)
or  \({}^{\backprime\backprime} \text{A} {}^{\prime\prime}\!\) \(=_\text{B}\!\)  \({}^{\backprime\backprime} \text{u} {}^{\prime\prime}\!\)    \({}^{\backprime\backprime} \text{B} {}^{\prime\prime}\!\) \(=_\text{B}\!\)  \({}^{\backprime\backprime} \text{i} {}^{\prime\prime}\!\)

and the semiotic partition\[\{ \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \} , \{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \} \}.\!\]


6.38. Considering the Source


Attributed Sign Relation


\(\begin{array}{ccl} O & = & \{ \text{A}, \text{B} \} \\[6pt] S & = & \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \} \\[6pt] I & = & \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \} \end{array}\)


Thus informed, the semiotic equivalence relation for interpreter \(\text{A}\!\) yields the following semiotic equations.

  \([{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}]_\text{A}\!\) \(=\!\) \([{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}]_\text{A}\!\) \(=\!\) \([{}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}]_\text{A}\!\) \(=\!\) \([{}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}]_\text{A}\!\)
or  \({}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}\!\) \(=_\text{A}\!\)  \({}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}\!\) \(=_\text{A}\!\)  \({}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}\!\) \(=_\text{A}\!\)  \({}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}\!\)

In comparison, the semiotic equivalence relation for interpreter \(\text{B}\!\) yields the following semiotic equations.

  \([{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}]_\text{B}\!\) \(=\!\) \([{}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}]_\text{B}\!\) \(=\!\) \([{}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}]_\text{B}\!\) \(=\!\) \([{}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}]_\text{B}\!\)
or  \({}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}\!\) \(=_\text{B}\!\)  \({}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}\!\) \(=_\text{B}\!\)  \({}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}\!\) \(=_\text{B}\!\)  \({}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}}\!\)

Consequently, the semiotic equivalence relations for \(\text{A}\!\) and \(\text{B}\!\) both induce the same semiotic partition on \(S,\!\) namely, the following.

\( \{ \{ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \}~,~\{ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} \} \}.\! \)


Augmented Sign Relation


\(\begin{array}{ccl} O & = & \{ \text{A}, \text{B} \} \\[8pt] S & = & \{ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} \} \\[8pt] I & = & \{ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} \} \end{array}\)


\(\begin{array}{lll} O & = & \{ \text{A}, \text{B} \} \end{array}\)

\(\begin{array}{lllllll} S & = & \{ & {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime}, & \\[4pt] & & & {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} & \} \\[10pt] I & = & \{ & {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime}, & \\[4pt] & & & {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime}, {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} & \} \end{array}\)


Relations In General

Next let's re-examine the numerical incidence properties of relations, concentrating on the definitions of the assorted regularity conditions.

For example, \(L\!\) is said to be \(^{\backprime\backprime} c\text{-regular at}~ j \, ^{\prime\prime}\) if and only if the cardinality of the local flag \(L_{x \,\text{at}\, j}\) is equal to \(c\!\) for all \(x \in X_j,\) coded in symbols, if and only if \(|L_{x \,\text{at}\, j}| = c\) for all \(x \in X_j.\)

In a similar fashion, it is possible to define the numerical incidence properties \(^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},\) \(^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},\) and so on. For ease of reference, a few of these definitions are recorded below.

\(\begin{array}{lll} L ~\text{is}~ c\text{-regular at}~ j & \iff & |L_{x \,\text{at}\, j}| = c ~\text{for all}~ x \in X_j. \\[6pt] L ~\text{is}~ (< c)\text{-regular at}~ j & \iff & |L_{x \,\text{at}\, j}| < c ~\text{for all}~ x \in X_j. \\[6pt] L ~\text{is}~ (> c)\text{-regular at}~ j & \iff & |L_{x \,\text{at}\, j}| > c ~\text{for all}~ x \in X_j. \\[6pt] L ~\text{is}~ (\le c)\text{-regular at}~ j & \iff & |L_{x \,\text{at}\, j}| \le c ~\text{for all}~ x \in X_j. \\[6pt] L ~\text{is}~ (\ge c)\text{-regular at}~ j & \iff & |L_{x \,\text{at}\, j}| \ge c ~\text{for all}~ x \in X_j. \end{array}\)

Clearly, if any relation is \((\le c)\text{-regular}\) on one of its domains \(X_j\!\) and also \((\ge c)\text{-regular}\) on the same domain, then it must be \((= c)\text{-regular}\!\) on that domain, in effect, \(c\text{-regular}\!\) at \(j.\!\)

Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the \(c\!\)-regularity conditions where \(c\!\) is equal to 1.

Let \(L \subseteq X \times Y\!\) be an arbitrary 2-adic relation. The following properties of \(L\!\) can then be defined:

\(\begin{array}{lll} L ~\text{is total at}~ X & \iff & L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X. \\[6pt] L ~\text{is total at}~ Y & \iff & L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y. \\[6pt] L ~\text{is tubular at}~ X & \iff & L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X. \\[6pt] L ~\text{is tubular at}~ Y & \iff & L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y. \end{array}\)

We have already looked at 2-adic relations that separately exemplify each of these regularities. We also introduced a few bits of additional terminology and special-purpose notations for working with tubular relations.

If \(L\!\) is tubular at \(X,\!\) then \(L\!\) is known as a partial function or a prefunction from \(X\!\) to \(Y,\!\) indicated by writing \(L : X \rightharpoonup Y.\!\) We have the following definitions and notations.

\(\begin{array}{lll} L ~\text{is a prefunction}~ L : X \rightharpoonup Y & \iff & L ~\text{is tubular at}~ X. \\[6pt] L ~\text{is a prefunction}~ L : X \leftharpoonup Y & \iff & L ~\text{is tubular at}~ Y. \end{array}\)

We arrive by way of this winding stair at the special stamps of 2-adic relations \(L \subseteq X \times Y\!\) that are variously described as 1-regular, total and tubular, or total prefunctions on specified domains, either \(X\!\) or \(Y\!\) or both, and that are more often celebrated as functions on those domains.

If \(L\!\) is a prefunction \(L : X \rightharpoonup Y\!\) that happens to be total at \(X,\!\) then \(L\!\) is known as a function from \(X\!\) to \(Y,\!\) indicated by writing \(L : X \to Y.\!\) To say that a relation \(L \subseteq X \times Y\!\) is totally tubular at \(X\!\) is to say that \(L\!\) is 1-regular at \(X.\!\) Thus, we may formalize the following definitions.

\(\begin{array}{lll} L ~\text{is a function}~ L : X \to Y & \iff & L ~\text{is}~ 1\text{-regular at}~ X. \\[6pt] L ~\text{is a function}~ L : X \leftarrow Y & \iff & L ~\text{is}~ 1\text{-regular at}~ Y. \end{array}\)

In the case of a 2-adic relation \(L \subseteq X \times Y\!\) that has the qualifications of a function \(f : X \to Y,\!\) there are a number of further differentia that arise.

\(\begin{array}{lll} f ~\text{is surjective} & \iff & f ~\text{is total at}~ Y. \\[6pt] f ~\text{is injective} & \iff & f ~\text{is tubular at}~ Y. \\[6pt] f ~\text{is bijective} & \iff & f ~\text{is}~ 1\text{-regular at}~ Y. \end{array}\)

Table Work

Group Operations


\(\text{Table 32.1}~~\text{Scheme of a Group Operation Table}\)
\(*\!\) \(x_0\!\) \(\cdots\!\) \(x_j\!\) \(\cdots\!\)
\(x_0\!\) \(x_0 * x_0\!\) \(\cdots\!\) \(x_0 * x_j\!\) \(\cdots\!\)
\(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\)
\(x_i\!\) \(x_i * x_0\!\) \(\cdots\!\) \(x_i * x_j\!\) \(\cdots\!\)
\(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\)


\(\text{Table 32.2}~~\text{Scheme of the Regular Ante-Representation}\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(x_0\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_0 * x_j),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)
\(x_i\!\) \(\{\!\) \((x_0 ~,~ x_i * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_i * x_j),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)


\(\text{Table 32.3}~~\text{Scheme of the Regular Post-Representation}\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(x_0\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_0),\!\) \(\cdots\!\) \((x_j ~,~ x_j * x_0),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)
\(x_i\!\) \(\{\!\) \((x_0 ~,~ x_0 * x_i),\!\) \(\cdots\!\) \((x_j ~,~ x_j * x_i),\!\) \(\cdots\!\) \(\}\!\)
\(\cdots\!\) \(\{\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\cdots\!\) \(\}\!\)


\(\text{Table 33.1}~~\text{Multiplication Operation of the Group}~V_4\)
\(\cdot\!\) \(\operatorname{e}\) \(\operatorname{f}\) \(\operatorname{g}\) \(\operatorname{h}\)
\(\operatorname{e}\) \(\operatorname{e}\) \(\operatorname{f}\) \(\operatorname{g}\) \(\operatorname{h}\)
\(\operatorname{f}\) \(\operatorname{f}\) \(\operatorname{e}\) \(\operatorname{h}\) \(\operatorname{g}\)
\(\operatorname{g}\) \(\operatorname{g}\) \(\operatorname{h}\) \(\operatorname{e}\) \(\operatorname{f}\)
\(\operatorname{h}\) \(\operatorname{h}\) \(\operatorname{g}\) \(\operatorname{f}\) \(\operatorname{e}\)


\(\text{Table 33.2}~~\text{Regular Representation of the Group}~V_4\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{e}\) \(\{\!\) \((\operatorname{e}, \operatorname{e}),\) \((\operatorname{f}, \operatorname{f}),\) \((\operatorname{g}, \operatorname{g}),\) \((\operatorname{h}, \operatorname{h})\) \(\}\!\)
\(\operatorname{f}\) \(\{\!\) \((\operatorname{e}, \operatorname{f}),\) \((\operatorname{f}, \operatorname{e}),\) \((\operatorname{g}, \operatorname{h}),\) \((\operatorname{h}, \operatorname{g})\) \(\}\!\)
\(\operatorname{g}\) \(\{\!\) \((\operatorname{e}, \operatorname{g}),\) \((\operatorname{f}, \operatorname{h}),\) \((\operatorname{g}, \operatorname{e}),\) \((\operatorname{h}, \operatorname{f})\) \(\}\!\)
\(\operatorname{h}\) \(\{\!\) \((\operatorname{e}, \operatorname{h}),\) \((\operatorname{f}, \operatorname{g}),\) \((\operatorname{g}, \operatorname{f}),\) \((\operatorname{h}, \operatorname{e})\) \(\}\!\)


\(\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Symbols}\!\)
\(\operatorname{e}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{f}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{g}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})\) \(\}\!\)
\(\operatorname{h}\) \(\{\!\) \(({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),\) \(({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})\) \(\}\!\)


\(\text{Table 34.1}~~\text{Multiplicative Presentation of the Group}~Z_4(\cdot)\)
\(\cdot\!\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\)
\(\operatorname{1}\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\)
\(\operatorname{a}\) \(\operatorname{a}\) \(\operatorname{b}\) \(\operatorname{c}\) \(\operatorname{1}\)
\(\operatorname{b}\) \(\operatorname{b}\) \(\operatorname{c}\) \(\operatorname{1}\) \(\operatorname{a}\)
\(\operatorname{c}\) \(\operatorname{c}\) \(\operatorname{1}\) \(\operatorname{a}\) \(\operatorname{b}\)


\(\text{Table 34.2}~~\text{Regular Representation of the Group}~Z_4(\cdot)\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{1}\) \(\{\!\) \((\operatorname{1}, \operatorname{1}),\) \((\operatorname{a}, \operatorname{a}),\) \((\operatorname{b}, \operatorname{b}),\) \((\operatorname{c}, \operatorname{c})\) \(\}\!\)
\(\operatorname{a}\) \(\{\!\) \((\operatorname{1}, \operatorname{a}),\) \((\operatorname{a}, \operatorname{b}),\) \((\operatorname{b}, \operatorname{c}),\) \((\operatorname{c}, \operatorname{1})\) \(\}\!\)
\(\operatorname{b}\) \(\{\!\) \((\operatorname{1}, \operatorname{b}),\) \((\operatorname{a}, \operatorname{c}),\) \((\operatorname{b}, \operatorname{1}),\) \((\operatorname{c}, \operatorname{a})\) \(\}\!\)
\(\operatorname{c}\) \(\{\!\) \((\operatorname{1}, \operatorname{c}),\) \((\operatorname{a}, \operatorname{1}),\) \((\operatorname{b}, \operatorname{a}),\) \((\operatorname{c}, \operatorname{b})\) \(\}\!\)


\(\text{Table 35.1}~~\text{Additive Presentation of the Group}~Z_4(+)\)
\(+\!\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\)
\(\operatorname{0}\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\)
\(\operatorname{1}\) \(\operatorname{1}\) \(\operatorname{2}\) \(\operatorname{3}\) \(\operatorname{0}\)
\(\operatorname{2}\) \(\operatorname{2}\) \(\operatorname{3}\) \(\operatorname{0}\) \(\operatorname{1}\)
\(\operatorname{3}\) \(\operatorname{3}\) \(\operatorname{0}\) \(\operatorname{1}\) \(\operatorname{2}\)


\(\text{Table 35.2}~~\text{Regular Representation of the Group}~Z_4(+)\)
\(\text{Element}\!\) \(\text{Function as Set of Ordered Pairs of Elements}\!\)
\(\operatorname{0}\) \(\{\!\) \((\operatorname{0}, \operatorname{0}),\) \((\operatorname{1}, \operatorname{1}),\) \((\operatorname{2}, \operatorname{2}),\) \((\operatorname{3}, \operatorname{3})\) \(\}\!\)
\(\operatorname{1}\) \(\{\!\) \((\operatorname{0}, \operatorname{1}),\) \((\operatorname{1}, \operatorname{2}),\) \((\operatorname{2}, \operatorname{3}),\) \((\operatorname{3}, \operatorname{0})\) \(\}\!\)
\(\operatorname{2}\) \(\{\!\) \((\operatorname{0}, \operatorname{2}),\) \((\operatorname{1}, \operatorname{3}),\) \((\operatorname{2}, \operatorname{0}),\) \((\operatorname{3}, \operatorname{1})\) \(\}\!\)
\(\operatorname{3}\) \(\{\!\) \((\operatorname{0}, \operatorname{3}),\) \((\operatorname{1}, \operatorname{0}),\) \((\operatorname{2}, \operatorname{1}),\) \((\operatorname{3}, \operatorname{2})\) \(\}\!\)


Sign Relations


\(\text{Table 1.} ~~ \text{Sign Relation of Interpreter A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 2.} ~~ \text{Sign Relation of Interpreter B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 36.} ~~ \text{Semantics for Higher Order Signs}\!\)
\(\text{Object Denoted}\!\) \(\text{Equivalent Signs}\!\)

\(\begin{matrix} \text{A} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} & = & {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\langle} \text{B} {}^{\rangle} & = & {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{A} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{A} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{B} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{B} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{i} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{i} {}^{\rangle\prime\prime} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} & = & {}^{\langle\backprime\backprime} \text{u} {}^{\prime\prime\rangle} & = & {}^{\backprime\backprime\langle} \text{u} {}^{\rangle\prime\prime} \end{matrix}\)


\(\text{Table 37.} ~~ \text{Sign Relation Containing a Higher Order Sign}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \text{s} \end{matrix}\)

\(\begin{matrix} \text{s} \\[2pt] \ldots \\[2pt] \text{t} \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 38.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (1)}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} x \\[2pt] {}^{\langle} x {}^{\rangle} \\[2pt] {}^{\langle\langle} x {}^{\rangle\rangle} \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} {}^{\langle} x {}^{\rangle} \\[2pt] {}^{\langle\langle} x {}^{\rangle\rangle} \\[2pt] {}^{\langle\langle\langle} x {}^{\rangle\rangle\rangle} \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 39.} ~~ \text{Sign Relation for a Succession of Higher Order Signs (2)}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} x \\[2pt] s_1 \\[2pt] s_2 \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} s_1 \\[2pt] s_2 \\[2pt] s_3 \\[2pt] \ldots \end{matrix}\)

\(\begin{matrix} \ldots \\[2pt] \ldots \\[2pt] \ldots \\[2pt] \ldots \end{matrix}\)


\(\text{Table 40.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)


\(\text{Table 41.} ~~ \text{Reflective Origin} ~ \operatorname{Ref}^0 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)


\(\text{Table 42.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)


\(\text{Table 43.} ~~ \text{Higher Ascent Sign Relation} ~ \operatorname{Ref}^1 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)


\(\text{Table 44.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)


\(\text{Table 45.} ~~ \text{Higher Import Sign Relation} ~ \operatorname{HI}^1 L(\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)


\(\text{Table 46.} ~~ \text{Higher Order Sign Relation for} ~ Q(\text{A}, \text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} L {}^{\rangle} \\ {}^{\langle} L {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} L {}^{\rangle} \\ {}^{\langle} L {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \\ {}^{\langle} q {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{A} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{A} {}^{\rangle} & ) \\ ( & \text{A} & , & {}^{\langle} \text{u} {}^{\rangle} & , & {}^{\langle} \text{u} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{B} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{B} {}^{\rangle} & ) \\ ( & \text{B} & , & {}^{\langle} \text{i} {}^{\rangle} & , & {}^{\langle} \text{i} {}^{\rangle} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{A} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{A} {}^{\rangle} & , & \text{B} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{A} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{B} {}^{\rangle} & , & \text{B} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{A} & ), & \text{A} & ) \\ (( & {}^{\langle} \text{i} {}^{\rangle} & , & \text{B} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{A} & ), & \text{B} & ) \\ (( & {}^{\langle} \text{u} {}^{\rangle} & , & \text{B} & ), & \text{A} & ) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \\ {}^{\langle} \operatorname{De} {}^{\rangle} \end{matrix}\)


\(\text{Table 48.1} ~~ \operatorname{ER}(L_\text{A}) : \text{Extensional Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)


\(\text{Table 48.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, \text{A}) \\ ({}^{\langle} \text{i} {}^{\rangle}, \text{A}) \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, \text{B}) \\ ({}^{\langle} \text{u} {}^{\rangle}, \text{B}) \end{matrix}\)


\(\text{Table 48.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \end{matrix}\)


\(\text{Table 49.1} ~~ \operatorname{ER}(L_\text{B}) : \text{Extensional Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)


\(\text{Table 49.2} ~~ \operatorname{ER}(\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, \text{A}) \\ ({}^{\langle} \text{u} {}^{\rangle}, \text{A}) \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, \text{B}) \\ ({}^{\langle} \text{i} {}^{\rangle}, \text{B}) \end{matrix}\)


\(\text{Table 49.3} ~~ \operatorname{ER}(\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{A} {}^{\rangle}) \\ ({}^{\langle} \text{u} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}) \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}) \\ ({}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}) \end{matrix}\)


Sign Processes

Blocked Version


\(\text{Table 78.} ~~ \text{Sign Process of Interpreter A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 79.} ~~ \text{Sign Process of Interpreter B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)


Sorted Version


\(\text{Table 78.} ~~ \text{Sign Process of Interpreter A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 79.} ~~ \text{Sign Process of Interpreter B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)


Type Tables


\(\text{Table 47.1} ~~ \text{Basic Types for ERs and IRs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\)

\(\begin{array}{l} \text{Property} \\ \text{Sign} \\ \text{Set} \\ \text{Triple}\\ \text{Underlying Element} \end{array}\)

\(\begin{matrix} P \\ \underline{S} \\ S \\ T \\ U \end{matrix}\)


\(\text{Table 47.2} ~~ \text{Derived Types for ERs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\) \(\text{Construction}\!\)
\(\text{Relation}\!\) \(R\!\) \(S(T(U))\!\)


\(\text{Table 47.3} ~~ \text{Derived Types for IRs of Sign Relations}\!\)
\(\text{Type}\!\) \(\text{Symbol}\!\) \(\text{Construction}\!\)
\(\text{Relation}\!\) \(P(R)\!\) \(P(S(T(U)))\!\)


Completed Work


\(\text{Table 50.} ~~ \text{Notations for Objects and Their Signs}\!\)
\(\text{Object}\!\) \(\text{Sign of Object}\!\)

\(\begin{matrix} \text{A} & \text{A} & w_1 \\[6pt] \text{B} & \text{B} & w_2 \\[12pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} & {}^{\langle} \text{A} {}^{\rangle} & w_3 \\[6pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} & {}^{\langle} \text{B} {}^{\rangle} & w_4 \\[6pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} & {}^{\langle} \text{i} {}^{\rangle} & w_5 \\[6pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} & {}^{\langle} \text{u} {}^{\rangle} & w_6 \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} & {}^{\langle} \text{A} {}^{\rangle} & {}^{\langle} w_1 {}^{\rangle} \\[6pt] {}^{\langle} \text{B} {}^{\rangle} & {}^{\langle} \text{B} {}^{\rangle} & {}^{\langle} w_2 {}^{\rangle} \\[12pt] {}^{\langle\backprime\backprime} \text{A} {}^{\prime\prime\rangle} & {}^{\langle\langle} \text{A} {}^{\rangle\rangle} & {}^{\langle} w_3 {}^{\rangle} \\[6pt] {}^{\langle\backprime\backprime} \text{B} {}^{\prime\prime\rangle} & {}^{\langle\langle} \text{B} {}^{\rangle\rangle} & {}^{\langle} w_4 {}^{\rangle} \\[6pt] {}^{\langle\backprime\backprime} \text{i} {}^{\prime\prime\rangle} & {}^{\langle\langle} \text{i} {}^{\rangle\rangle} & {}^{\langle} w_5 {}^{\rangle} \\[6pt] {}^{\langle\backprime\backprime} \text{u} {}^{\prime\prime\rangle} & {}^{\langle\langle} \text{u} {}^{\rangle\rangle} & {}^{\langle} w_6 {}^{\rangle} \end{matrix}\)


\(\text{Table 51.1} ~~ \text{Notations for Properties and Their Signs (1)}\!\)
\(\text{Property}\!\) \(\text{Sign of Property}\!\)

\(\begin{matrix} {}^{\lbrace} \text{A} {}^{\rbrace} & {}^{\lbrace} \text{A} {}^{\rbrace} & {}^{\lbrace} w_1 {}^{\rbrace} \\[6pt] {}^{\lbrace} \text{B} {}^{\rbrace} & {}^{\lbrace} \text{B} {}^{\rbrace} & {}^{\lbrace} w_2 {}^{\rbrace} \\[12pt] {}^{\lbrace\backprime\backprime} \text{A} {}^{\prime\prime\rbrace} & {}^{\lbrace\langle} \text{A} {}^{\rangle\rbrace} & {}^{\lbrace} w_3 {}^{\rbrace} \\[6pt] {}^{\lbrace\backprime\backprime} \text{B} {}^{\prime\prime\rbrace} & {}^{\lbrace\langle} \text{B} {}^{\rangle\rbrace} & {}^{\lbrace} w_4 {}^{\rbrace} \\[6pt] {}^{\lbrace\backprime\backprime} \text{i} {}^{\prime\prime\rbrace} & {}^{\lbrace\langle} \text{i} {}^{\rangle\rbrace} & {}^{\lbrace} w_5 {}^{\rbrace} \\[6pt] {}^{\lbrace\backprime\backprime} \text{u} {}^{\prime\prime\rbrace} & {}^{\lbrace\langle} \text{u} {}^{\rangle\rbrace} & {}^{\lbrace} w_6 {}^{\rbrace} \end{matrix}\)

\(\begin{matrix} {}^{\langle\lbrace} \text{A} {}^{\rbrace\rangle} & {}^{\langle\lbrace} \text{A} {}^{\rbrace\rangle} & {}^{\langle\lbrace} w_1 {}^{\rbrace\rangle} \\[6pt] {}^{\langle\lbrace} \text{B} {}^{\rbrace\rangle} & {}^{\langle\lbrace} \text{B} {}^{\rbrace\rangle} & {}^{\langle\lbrace} w_2 {}^{\rbrace\rangle} \\[12pt] {}^{\langle\lbrace\backprime\backprime} \text{A} {}^{\prime\prime\rbrace\rangle} & {}^{\langle\lbrace\langle} \text{A} {}^{\rangle\rbrace\rangle} & {}^{\langle\lbrace} w_3 {}^{\rbrace\rangle} \\[6pt] {}^{\langle\lbrace\backprime\backprime} \text{B} {}^{\prime\prime\rbrace\rangle} & {}^{\langle\lbrace\langle} \text{B} {}^{\rangle\rbrace\rangle} & {}^{\langle\lbrace} w_4 {}^{\rbrace\rangle} \\[6pt] {}^{\langle\lbrace\backprime\backprime} \text{i} {}^{\prime\prime\rbrace\rangle} & {}^{\langle\lbrace\langle} \text{i} {}^{\rangle\rbrace\rangle} & {}^{\langle\lbrace} w_5 {}^{\rbrace\rangle} \\[6pt] {}^{\langle\lbrace\backprime\backprime} \text{u} {}^{\prime\prime\rbrace\rangle} & {}^{\langle\lbrace\langle} \text{u} {}^{\rangle\rbrace\rangle} & {}^{\langle\lbrace} w_6 {}^{\rbrace\rangle} \end{matrix}\)


\(\text{Table 51.2} ~~ \text{Notations for Properties and Their Signs (2)}\!\)
\(\text{Property}\!\) \(\text{Sign of Property}\!\)

\(\begin{matrix} \underline{\underline{\text{A}}} & \underline{\underline{\text{A}}} & \underline{\underline{w_1}} \\[6pt] \underline{\underline{\text{B}}} & \underline{\underline{\text{B}}} & \underline{\underline{w_2}} \\[12pt] \underline{\underline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}} & \underline{\underline{{}^{\langle} \text{A} {}^{\rangle}}} & \underline{\underline{w_3}} \\[6pt] \underline{\underline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}} & \underline{\underline{{}^{\langle} \text{B} {}^{\rangle}}} & \underline{\underline{w_4}} \\[6pt] \underline{\underline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}} & \underline{\underline{{}^{\langle} \text{i} {}^{\rangle}}} & \underline{\underline{w_5}} \\[6pt] \underline{\underline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}} & \underline{\underline{{}^{\langle} \text{u} {}^{\rangle}}} & \underline{\underline{w_6}} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_1}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} & {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_2}} {}^{\rangle} \\[12pt] {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}}} {}^{\rangle} & {}^{\langle} \underline{\underline{{}^{\langle} \text{A} {}^{\rangle}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_3}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}}} {}^{\rangle} & {}^{\langle} \underline{\underline{{}^{\langle} \text{B} {}^{\rangle}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_4}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}}} {}^{\rangle} & {}^{\langle} \underline{\underline{{}^{\langle} \text{i} {}^{\rangle}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_5}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}}} {}^{\rangle} & {}^{\langle} \underline{\underline{{}^{\langle} \text{u} {}^{\rangle}}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_6}} {}^{\rangle} \end{matrix}\)


\(\text{Table 51.3} ~~ \text{Notations for Properties and Their Signs (3)}\!\)
\(\text{Property}\!\) \(\text{Sign of Property}\!\)

\(\begin{matrix} \underline{\underline{\text{A}}} & \underline{\underline{o_1}} & \underline{\underline{w_1}} \\[6pt] \underline{\underline{\text{B}}} & \underline{\underline{o_2}} & \underline{\underline{w_2}} \\[12pt] \underline{\underline{\text{a}}} & \underline{\underline{s_1}} & \underline{\underline{w_3}} \\[6pt] \underline{\underline{\text{b}}} & \underline{\underline{s_2}} & \underline{\underline{w_4}} \\[6pt] \underline{\underline{\text{i}}} & \underline{\underline{s_3}} & \underline{\underline{w_5}} \\[6pt] \underline{\underline{\text{u}}} & \underline{\underline{s_4}} & \underline{\underline{w_6}} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \underline{\underline{\text{A}}} {}^{\rangle} & {}^{\langle} \underline{\underline{o_1}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_1}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{\text{B}}} {}^{\rangle} & {}^{\langle} \underline{\underline{o_2}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_2}} {}^{\rangle} \\[12pt] {}^{\langle} \underline{\underline{\text{a}}} {}^{\rangle} & {}^{\langle} \underline{\underline{s_1}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_3}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{\text{b}}} {}^{\rangle} & {}^{\langle} \underline{\underline{s_2}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_4}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{\text{i}}} {}^{\rangle} & {}^{\langle} \underline{\underline{s_3}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_5}} {}^{\rangle} \\[6pt] {}^{\langle} \underline{\underline{\text{u}}} {}^{\rangle} & {}^{\langle} \underline{\underline{s_4}} {}^{\rangle} & {}^{\langle} \underline{\underline{w_6}} {}^{\rangle} \end{matrix}\)


\(\text{Table 52.1} ~~ \text{Notations for Instances and Their Signs (1)}\!\)
\(\text{Instance}\!\) \(\text{Sign of Instance}\!\)

\(\begin{matrix} {}^{\lbrack} \text{A} {}^{\rbrack} & {}^{\lbrack} \text{A} {}^{\rbrack} & {}^{\lbrack} w_1 {}^{\rbrack} \\[6pt] {}^{\lbrack} \text{B} {}^{\rbrack} & {}^{\lbrack} \text{B} {}^{\rbrack} & {}^{\lbrack} w_2 {}^{\rbrack} \\[12pt] {}^{\lbrack\backprime\backprime} \text{A} {}^{\prime\prime\rbrack} & {}^{\lbrack\langle} \text{A} {}^{\rangle\rbrack} & {}^{\lbrack} w_3 {}^{\rbrack} \\[6pt] {}^{\lbrack\backprime\backprime} \text{B} {}^{\prime\prime\rbrack} & {}^{\lbrack\langle} \text{B} {}^{\rangle\rbrack} & {}^{\lbrack} w_4 {}^{\rbrack} \\[6pt] {}^{\lbrack\backprime\backprime} \text{i} {}^{\prime\prime\rbrack} & {}^{\lbrack\langle} \text{i} {}^{\rangle\rbrack} & {}^{\lbrack} w_5 {}^{\rbrack} \\[6pt] {}^{\lbrack\backprime\backprime} \text{u} {}^{\prime\prime\rbrack} & {}^{\lbrack\langle} \text{u} {}^{\rangle\rbrack} & {}^{\lbrack} w_6 {}^{\rbrack} \end{matrix}\)

\(\begin{matrix} {}^{\langle\lbrack} \text{A} {}^{\rbrack\rangle} & {}^{\langle\lbrack} \text{A} {}^{\rbrack\rangle} & {}^{\langle\lbrack} w_1 {}^{\rbrack\rangle} \\[6pt] {}^{\langle\lbrack} \text{B} {}^{\rbrack\rangle} & {}^{\langle\lbrack} \text{B} {}^{\rbrack\rangle} & {}^{\langle\lbrack} w_2 {}^{\rbrack\rangle} \\[12pt] {}^{\langle\lbrack\backprime\backprime} \text{A} {}^{\prime\prime\rbrack\rangle} & {}^{\langle\lbrack\langle} \text{A} {}^{\rangle\rbrack\rangle} & {}^{\langle\lbrack} w_3 {}^{\rbrack\rangle} \\[6pt] {}^{\langle\lbrack\backprime\backprime} \text{B} {}^{\prime\prime\rbrack\rangle} & {}^{\langle\lbrack\langle} \text{B} {}^{\rangle\rbrack\rangle} & {}^{\langle\lbrack} w_4 {}^{\rbrack\rangle} \\[6pt] {}^{\langle\lbrack\backprime\backprime} \text{i} {}^{\prime\prime\rbrack\rangle} & {}^{\langle\lbrack\langle} \text{i} {}^{\rangle\rbrack\rangle} & {}^{\langle\lbrack} w_5 {}^{\rbrack\rangle} \\[6pt] {}^{\langle\lbrack\backprime\backprime} \text{u} {}^{\prime\prime\rbrack\rangle} & {}^{\langle\lbrack\langle} \text{u} {}^{\rangle\rbrack\rangle} & {}^{\langle\lbrack} w_6 {}^{\rbrack\rangle} \end{matrix}\)


\(\text{Table 52.2} ~~ \text{Notations for Instances and Their Signs (2)}\!\)
\(\text{Instance}\!\) \(\text{Sign of Instance}\!\)

\(\begin{matrix} \overline{\text{A}} & \overline{\text{A}} & \overline{w_1} \\[6pt] \overline{\text{B}} & \overline{\text{B}} & \overline{w_2} \\[12pt] \overline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}} & \overline{{}^{\langle} \text{A} {}^{\rangle}} & \overline{w_3} \\[6pt] \overline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}} & \overline{{}^{\langle} \text{B} {}^{\rangle}} & \overline{w_4} \\[6pt] \overline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}} & \overline{{}^{\langle} \text{i} {}^{\rangle}} & \overline{w_5} \\[6pt] \overline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}} & \overline{{}^{\langle} \text{u} {}^{\rangle}} & \overline{w_6} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \overline{\text{A}} {}^{\rangle} & {}^{\langle} \overline{\text{A}} {}^{\rangle} & {}^{\langle} \overline{w_1} {}^{\rangle} \\[6pt] {}^{\langle} \overline{\text{B}} {}^{\rangle} & {}^{\langle} \overline{\text{B}} {}^{\rangle} & {}^{\langle} \overline{w_2} {}^{\rangle} \\[12pt] {}^{\langle} \overline{{}^{\backprime\backprime} \text{A} {}^{\prime\prime}} {}^{\rangle} & {}^{\langle} \overline{{}^{\langle} \text{A} {}^{\rangle}} {}^{\rangle} & {}^{\langle} \overline{w_3} {}^{\rangle} \\[6pt] {}^{\langle} \overline{{}^{\backprime\backprime} \text{B} {}^{\prime\prime}} {}^{\rangle} & {}^{\langle} \overline{{}^{\langle} \text{B} {}^{\rangle}} {}^{\rangle} & {}^{\langle} \overline{w_4} {}^{\rangle} \\[6pt] {}^{\langle} \overline{{}^{\backprime\backprime} \text{i} {}^{\prime\prime}} {}^{\rangle} & {}^{\langle} \overline{{}^{\langle} \text{i} {}^{\rangle}} {}^{\rangle} & {}^{\langle} \overline{w_5} {}^{\rangle} \\[6pt] {}^{\langle} \overline{{}^{\backprime\backprime} \text{u} {}^{\prime\prime}} {}^{\rangle} & {}^{\langle} \overline{{}^{\langle} \text{u} {}^{\rangle}} {}^{\rangle} & {}^{\langle} \overline{w_6} {}^{\rangle} \end{matrix}\)


\(\text{Table 52.3} ~~ \text{Notations for Instances and Their Signs (3)}\!\)
\(\text{Instance}\!\) \(\text{Sign of Instance}\!\)

\(\begin{matrix} \overline{\text{A}} & \overline{o_1} & \overline{w_1} \\[6pt] \overline{\text{B}} & \overline{o_2} & \overline{w_2} \\[12pt] \overline{\text{a}} & \overline{s_1} & \overline{w_3} \\[6pt] \overline{\text{b}} & \overline{s_2} & \overline{w_4} \\[6pt] \overline{\text{i}} & \overline{s_3} & \overline{w_5} \\[6pt] \overline{\text{u}} & \overline{s_4} & \overline{w_6} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \overline{\text{A}} {}^{\rangle} & {}^{\langle} \overline{o_1} {}^{\rangle} & {}^{\langle} \overline{w_1} {}^{\rangle} \\[6pt] {}^{\langle} \overline{\text{B}} {}^{\rangle} & {}^{\langle} \overline{o_2} {}^{\rangle} & {}^{\langle} \overline{w_2} {}^{\rangle} \\[12pt] {}^{\langle} \overline{\text{a}} {}^{\rangle} & {}^{\langle} \overline{s_1} {}^{\rangle} & {}^{\langle} \overline{w_3} {}^{\rangle} \\[6pt] {}^{\langle} \overline{\text{b}} {}^{\rangle} & {}^{\langle} \overline{s_2} {}^{\rangle} & {}^{\langle} \overline{w_4} {}^{\rangle} \\[6pt] {}^{\langle} \overline{\text{i}} {}^{\rangle} & {}^{\langle} \overline{s_3} {}^{\rangle} & {}^{\langle} \overline{w_5} {}^{\rangle} \\[6pt] {}^{\langle} \overline{\text{u}} {}^{\rangle} & {}^{\langle} \overline{s_4} {}^{\rangle} & {}^{\langle} \overline{w_6} {}^{\rangle} \end{matrix}\)


\(\text{Table 53.1} ~~ \text{Elements of} ~ \operatorname{ER}(W)\!\)
\(\text{Mnemonic Element}\!\)

\(w \in W\!\)
\(\text{Pragmatic Element}\!\)

\(w \in W\!\)
\(\text{Abstract Element}\!\)

\(w_i \in W\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} o_1 \\[4pt] o_2 \\[4pt] s_1 \\[4pt] s_2 \\[4pt] s_3 \\[4pt] s_4 \end{matrix}\)

\(\begin{matrix} w_1 \\[4pt] w_2 \\[4pt] w_3 \\[4pt] w_4 \\[4pt] w_5 \\[4pt] w_6 \end{matrix}\)


\(\text{Table 53.2} ~~ \text{Features of} ~ \operatorname{LIR}(W)\!\)

\(\text{Mnemonic Feature}\!\)

\(\underline{\underline{w}} \in \underline{\underline{W}}\!\)

\(\text{Pragmatic Feature}\!\)

\(\underline{\underline{w}} \in \underline{\underline{W}}\!\)

\(\text{Abstract Feature}\!\)

\(\underline{\underline{w_i}} \in \underline{\underline{W}}\!\)

\(\begin{matrix} \underline{\underline{\text{A}}} \\[4pt] \underline{\underline{\text{B}}} \\[4pt] \underline{\underline{\text{a}}} \\[4pt] \underline{\underline{\text{b}}} \\[4pt] \underline{\underline{\text{i}}} \\[4pt] \underline{\underline{\text{u}}} \end{matrix}\)

\(\begin{matrix} \underline{\underline{o_1}} \\[4pt] \underline{\underline{o_2}} \\[4pt] \underline{\underline{s_1}} \\[4pt] \underline{\underline{s_2}} \\[4pt] \underline{\underline{s_3}} \\[4pt] \underline{\underline{s_4}} \end{matrix}\)

\(\begin{matrix} \underline{\underline{w_1}} \\[4pt] \underline{\underline{w_2}} \\[4pt] \underline{\underline{w_3}} \\[4pt] \underline{\underline{w_4}} \\[4pt] \underline{\underline{w_5}} \\[4pt] \underline{\underline{w_6}} \end{matrix}\)


\(\text{Table 54.1} ~~ \text{Mnemonic Literal Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} 100000 \\[4pt] 010000 \\[4pt] 001000 \\[4pt] 000100 \\[4pt] 000010 \\[4pt] 000001 \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{A}}~ (\underline{\underline{B}}) (\underline{\underline{a}}) (\underline{\underline{b}}) (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{A}}) ~\underline{\underline{B}}~ (\underline{\underline{a}}) (\underline{\underline{b}}) (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{A}}) (\underline{\underline{B}}) ~\underline{\underline{a}}~ (\underline{\underline{b}}) (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{A}}) (\underline{\underline{B}}) (\underline{\underline{a}}) ~\underline{\underline{b}}~ (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{A}}) (\underline{\underline{B}}) (\underline{\underline{a}}) (\underline{\underline{b}}) ~\underline{\underline{i}}~ (\underline{\underline{u}}) \\[4pt] (\underline{\underline{A}}) (\underline{\underline{B}}) (\underline{\underline{a}}) (\underline{\underline{b}}) (\underline{\underline{i}}) ~\underline{\underline{u}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{A}}\rangle}_W \\[4pt] {\langle\underline{\underline{B}}\rangle}_W \\[4pt] {\langle\underline{\underline{a}}\rangle}_W \\[4pt] {\langle\underline{\underline{b}}\rangle}_W \\[4pt] {\langle\underline{\underline{i}}\rangle}_W \\[4pt] {\langle\underline{\underline{u}}\rangle}_W \end{matrix}\)


\(\text{Table 54.2} ~~ \text{Pragmatic Literal Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} 100000 \\[4pt] 010000 \\[4pt] 001000 \\[4pt] 000100 \\[4pt] 000010 \\[4pt] 000001 \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{o_1}}~ (\underline{\underline{o_2}}) (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{o_1}}) ~\underline{\underline{o_2}}~ (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{o_1}}) (\underline{\underline{o_2}}) ~\underline{\underline{s_1}}~ (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{o_1}}) (\underline{\underline{o_2}}) (\underline{\underline{s_1}}) ~\underline{\underline{s_2}}~ (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{o_1}}) (\underline{\underline{o_2}}) (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) ~\underline{\underline{s_3}}~ (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{o_1}}) (\underline{\underline{o_2}}) (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) ~\underline{\underline{s_4}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{o_1}}\rangle}_W \\[4pt] {\langle\underline{\underline{o_2}}\rangle}_W \\[4pt] {\langle\underline{\underline{s_1}}\rangle}_W \\[4pt] {\langle\underline{\underline{s_2}}\rangle}_W \\[4pt] {\langle\underline{\underline{s_3}}\rangle}_W \\[4pt] {\langle\underline{\underline{s_4}}\rangle}_W \end{matrix}\)


\(\text{Table 54.3} ~~ \text{Abstract Literal Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} 100000 \\[4pt] 010000 \\[4pt] 001000 \\[4pt] 000100 \\[4pt] 000010 \\[4pt] 000001 \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{w_1}}~ (\underline{\underline{w_2}}) (\underline{\underline{w_3}}) (\underline{\underline{w_4}}) (\underline{\underline{w_5}}) (\underline{\underline{w_6}}) \\[4pt] (\underline{\underline{w_1}}) ~\underline{\underline{w_2}}~ (\underline{\underline{w_3}}) (\underline{\underline{w_4}}) (\underline{\underline{w_5}}) (\underline{\underline{w_6}}) \\[4pt] (\underline{\underline{w_1}}) (\underline{\underline{w_2}}) ~\underline{\underline{w_3}}~ (\underline{\underline{w_4}}) (\underline{\underline{w_5}}) (\underline{\underline{w_6}}) \\[4pt] (\underline{\underline{w_1}}) (\underline{\underline{w_2}}) (\underline{\underline{w_3}}) ~\underline{\underline{w_4}}~ (\underline{\underline{w_5}}) (\underline{\underline{w_6}}) \\[4pt] (\underline{\underline{w_1}}) (\underline{\underline{w_2}}) (\underline{\underline{w_3}}) (\underline{\underline{w_4}}) ~\underline{\underline{w_5}}~ (\underline{\underline{w_6}}) \\[4pt] (\underline{\underline{w_1}}) (\underline{\underline{w_2}}) (\underline{\underline{w_3}}) (\underline{\underline{w_4}}) (\underline{\underline{w_5}}) ~\underline{\underline{w_6}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{w_1}}\rangle}_W \\[4pt] {\langle\underline{\underline{w_2}}\rangle}_W \\[4pt] {\langle\underline{\underline{w_3}}\rangle}_W \\[4pt] {\langle\underline{\underline{w_4}}\rangle}_W \\[4pt] {\langle\underline{\underline{w_5}}\rangle}_W \\[4pt] {\langle\underline{\underline{w_6}}\rangle}_W \end{matrix}\)


\(\text{Table 55.1} ~~ \operatorname{LIR}_1 (L_\text{A}) : \text{Literal Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)


\(\text{Table 55.2} ~~ \operatorname{LIR}_1 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_W, {\langle\underline{\underline{\text{A}}}\rangle}_W) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_W, {\langle\underline{\underline{\text{A}}}\rangle}_W) \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_W, {\langle\underline{\underline{\text{B}}}\rangle}_W) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_W, {\langle\underline{\underline{\text{B}}}\rangle}_W) \end{matrix}\)


\(\text{Table 55.3} ~~ \operatorname{LIR}_1 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}W} \\[4pt] 0_{\operatorname{d}W} \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}W} \\[4pt] 0_{\operatorname{d}W} \end{matrix}\)


\(\text{Table 56.1} ~~ \operatorname{LIR}_1 (L_\text{B}) : \text{Literal Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)


\(\text{Table 56.2} ~~ \operatorname{LIR}_1 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_W, {\langle\underline{\underline{\text{A}}}\rangle}_W) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_W, {\langle\underline{\underline{\text{A}}}\rangle}_W) \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_W, {\langle\underline{\underline{\text{B}}}\rangle}_W) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_W, {\langle\underline{\underline{\text{B}}}\rangle}_W) \end{matrix}\)


\(\text{Table 56.3} ~~ \operatorname{LIR}_1 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}W} \\[4pt] 0_{\operatorname{d}W} \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_W \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_W \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}W} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}W} \\[4pt] 0_{\operatorname{d}W} \end{matrix}\)


\(\text{Table 57.1} ~~ \text{Mnemonic Lateral Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {10}_X \\[4pt] {01}_X \\[4pt] {1000}_Y \\[4pt] {0100}_Y \\[4pt] {0010}_Y \\[4pt] {0001}_Y \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{A}}~ (\underline{\underline{B}}) \\[4pt] (\underline{\underline{A}}) ~\underline{\underline{B}}~ \\[4pt] ~\underline{\underline{a}}~ (\underline{\underline{b}}) (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{a}}) ~\underline{\underline{b}}~ (\underline{\underline{i}}) (\underline{\underline{u}}) \\[4pt] (\underline{\underline{a}}) (\underline{\underline{b}}) ~\underline{\underline{i}}~ (\underline{\underline{u}}) \\[4pt] (\underline{\underline{a}}) (\underline{\underline{b}}) (\underline{\underline{i}}) ~\underline{\underline{u}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{A}}\rangle}_X \\[4pt] {\langle\underline{\underline{B}}\rangle}_X \\[4pt] {\langle\underline{\underline{a}}\rangle}_Y \\[4pt] {\langle\underline{\underline{b}}\rangle}_Y \\[4pt] {\langle\underline{\underline{i}}\rangle}_Y \\[4pt] {\langle\underline{\underline{u}}\rangle}_Y \end{matrix}\)


\(\text{Table 57.2} ~~ \text{Pragmatic Lateral Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {10}_X \\[4pt] {01}_X \\[4pt] {1000}_Y \\[4pt] {0100}_Y \\[4pt] {0010}_Y \\[4pt] {0001}_Y \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{o_1}}~ (\underline{\underline{o_2}}) \\[4pt] (\underline{\underline{o_1}}) ~\underline{\underline{o_2}}~ \\[4pt] ~\underline{\underline{s_1}}~ (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{s_1}}) ~\underline{\underline{s_2}}~ (\underline{\underline{s_3}}) (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) ~\underline{\underline{s_3}}~ (\underline{\underline{s_4}}) \\[4pt] (\underline{\underline{s_1}}) (\underline{\underline{s_2}}) (\underline{\underline{s_3}}) ~\underline{\underline{s_4}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{o_1}}\rangle}_X \\[4pt] {\langle\underline{\underline{o_2}}\rangle}_X \\[4pt] {\langle\underline{\underline{s_1}}\rangle}_Y \\[4pt] {\langle\underline{\underline{s_2}}\rangle}_Y \\[4pt] {\langle\underline{\underline{s_3}}\rangle}_Y \\[4pt] {\langle\underline{\underline{s_4}}\rangle}_Y \end{matrix}\)


\(\text{Table 57.3} ~~ \text{Abstract Lateral Codes for Interpreters A and B}\!\)
\(\text{Element}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {10}_X \\[4pt] {01}_X \\[4pt] {1000}_Y \\[4pt] {0100}_Y \\[4pt] {0010}_Y \\[4pt] {0001}_Y \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{x_1}}~ (\underline{\underline{x_2}}) \\[4pt] (\underline{\underline{x_1}}) ~\underline{\underline{x_2}}~ \\[4pt] ~\underline{\underline{y_1}}~ (\underline{\underline{y_2}}) (\underline{\underline{y_3}}) (\underline{\underline{y_4}}) \\[4pt] (\underline{\underline{y_1}}) ~\underline{\underline{y_2}}~ (\underline{\underline{y_3}}) (\underline{\underline{y_4}}) \\[4pt] (\underline{\underline{y_1}}) (\underline{\underline{y_2}}) ~\underline{\underline{y_3}}~ (\underline{\underline{y_4}}) \\[4pt] (\underline{\underline{y_1}}) (\underline{\underline{y_2}}) (\underline{\underline{y_3}}) ~\underline{\underline{y_4}}~ \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{x_1}}\rangle}_X \\[4pt] {\langle\underline{\underline{x_2}}\rangle}_X \\[4pt] {\langle\underline{\underline{y_1}}\rangle}_Y \\[4pt] {\langle\underline{\underline{y_2}}\rangle}_Y \\[4pt] {\langle\underline{\underline{y_3}}\rangle}_Y \\[4pt] {\langle\underline{\underline{y_4}}\rangle}_Y \end{matrix}\)


\(\text{Table 58.1} ~~ \operatorname{LIR}_2 (L_\text{A}) : \text{Lateral Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)


\(\text{Table 58.2} ~~ \operatorname{LIR}_2 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \end{matrix}\)


\(\text{Table 58.3} ~~ \operatorname{LIR}_2 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \\[4pt] ~\underline{\underline{\text{da}}}~ (\underline{\underline{\text{db}}}) ~\underline{\underline{\text{di}}}~ (\underline{\underline{\text{du}}}) \\[4pt] ~\underline{\underline{\text{da}}}~ (\underline{\underline{\text{db}}}) ~\underline{\underline{\text{di}}}~ (\underline{\underline{\text{du}}}) \\[4pt] (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \\[4pt] (\underline{\underline{\text{da}}}) ~\underline{\underline{\text{db}}}~ (\underline{\underline{\text{di}}}) ~\underline{\underline{\text{du}}}~ \\[4pt] (\underline{\underline{\text{da}}}) ~\underline{\underline{\text{db}}}~ (\underline{\underline{\text{di}}}) ~\underline{\underline{\text{du}}}~ \\[4pt] (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \end{matrix}\)


\(\text{Table 59.1} ~~ \operatorname{LIR}_2 (L_\text{B}) : \text{Lateral Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)


\(\text{Table 59.2} ~~ \operatorname{LIR}_2 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \\[4pt] ~\underline{\underline{\text{A}}}~ (\underline{\underline{\text{B}}}) \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \\[4pt] (\underline{\underline{\text{A}}}) ~\underline{\underline{\text{B}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \end{matrix}\)


\(\text{Table 59.3} ~~ \operatorname{LIR}_2 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \\[4pt] ~\underline{\underline{\text{a}}}~ (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) (\underline{\underline{\text{i}}}) ~\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \\[4pt] ~\underline{\underline{\text{da}}}~ (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) ~\underline{\underline{\text{du}}}~ \\[4pt] ~\underline{\underline{\text{da}}}~ (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) ~\underline{\underline{\text{du}}}~ \\[4pt] (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) ~\underline{\underline{\text{b}}}~ (\underline{\underline{\text{i}}}) (\underline{\underline{\text{u}}}) \\[4pt] (\underline{\underline{\text{a}}}) (\underline{\underline{\text{b}}}) ~\underline{\underline{\text{i}}}~ (\underline{\underline{\text{u}}}) \end{matrix}\)

\(\begin{matrix} (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \\[4pt] (\underline{\underline{\text{da}}}) ~\underline{\underline{\text{db}}}~ ~\underline{\underline{\text{di}}}~ (\underline{\underline{\text{du}}}) \\[4pt] (\underline{\underline{\text{da}}}) ~\underline{\underline{\text{db}}}~ ~\underline{\underline{\text{di}}}~ (\underline{\underline{\text{du}}}) \\[4pt] (\underline{\underline{\text{da}}}) (\underline{\underline{\text{db}}}) (\underline{\underline{\text{di}}}) (\underline{\underline{\text{du}}}) \end{matrix}\)


\(\text{Table 60.1} ~~ \operatorname{LIR}_3 (L_\text{A}) : \text{Lateral Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)


\(\text{Table 60.2} ~~ \operatorname{LIR}_3 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \end{matrix}\)


\(\text{Table 60.3} ~~ \operatorname{LIR}_3 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}Y} \\[4pt] 0_{\operatorname{d}Y} \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}Y} \\[4pt] 0_{\operatorname{d}Y} \end{matrix}\)


\(\text{Table 61.1} ~~ \operatorname{LIR}_3 (L_\text{B}) : \text{Lateral Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)


\(\text{Table 61.2} ~~ \operatorname{LIR}_3 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{A}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{A}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{a}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{u}}}\rangle}_Y, {\langle\underline{\underline{\text{A}}}\rangle}_X) \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{B}}}\rangle}_X \\[4pt] {\langle\underline{\underline{\text{B}}}\rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} ({\langle\underline{\underline{\text{b}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \\[4pt] ({\langle\underline{\underline{\text{i}}}\rangle}_Y, {\langle\underline{\underline{\text{B}}}\rangle}_X) \end{matrix}\)


\(\text{Table 61.3} ~~ \operatorname{LIR}_3 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{a}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{u}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle}_{\operatorname{d}Y} \\[4pt] 0_{\operatorname{d}Y} \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{b}}}\rangle}_Y \\[4pt] {\langle\underline{\underline{\text{i}}}\rangle}_Y \end{matrix}\)

\(\begin{matrix} 0_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}Y} \\[4pt] {\langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle}_{\operatorname{d}Y} \\[4pt] 0_{\operatorname{d}Y} \end{matrix}\)


\(\text{Table 62.1} ~~ \text{Analytic Codes for Object Features}\!\)
\(\text{Category}\!\) \(\text{Mnemonic}\!\) \(\text{Code}\!\)

\(\begin{array}{l} \text{Self} \\[4pt] \text{Other} \end{array}\)

\(\begin{matrix} \text{self} \\[4pt] \text{(self)} \end{matrix}\)

\(\begin{matrix} \text{s} \\[4pt] \text{(s)} \end{matrix}\)


\(\text{Table 62.2} ~~ \text{Analytic Codes for Semantic Features}\!\)
\(\text{Category}\!\) \(\text{Mnemonic}\!\) \(\text{Code}\!\)

\(\begin{array}{l} \text{1st Person} \\[4pt] \text{2nd Person} \end{array}\)

\(\begin{matrix} \text{my} \\[4pt] \text{(my)} \end{matrix}\)

\(\begin{matrix} \text{m} \\[4pt] \text{(m)} \end{matrix}\)


\(\text{Table 62.3} ~~ \text{Analytic Codes for Syntactic Features}\!\)
\(\text{Category}\!\) \(\text{Mnemonic}\!\) \(\text{Code}\!\)

\(\begin{array}{l} \text{Noun} \\[4pt] \text{Pronoun} \end{array}\)

\(\begin{matrix} \text{name} \\[4pt] \text{(name)} \end{matrix}\)

\(\begin{matrix} \text{n} \\[4pt] \text{(n)} \end{matrix}\)


\(\text{Table 63.} ~~ \text{Analytic Codes for Interpreter A}\!\)
\(\text{Name}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Mnemonic}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {1}_X \\[4pt] {0}_X \\[4pt] {11}_Y \\[4pt] {01}_Y \\[4pt] {10}_Y \\[4pt] {00}_Y \end{matrix}\)

\(\begin{matrix} ~x_1~ \\[4pt] (x_1) \\[4pt] ~y_1~~y_2~ \\[4pt] (y_1)~y_2~ \\[4pt] ~y_1~(y_2) \\[4pt] (y_1)(y_2) \end{matrix}\)

\(\begin{matrix} ~\text{self}~ \\[4pt] (\text{self}) \\[4pt] ~\text{my}~~\text{name}~ \\[4pt] (\text{my})~\text{name}~ \\[4pt] ~\text{my}~(\text{name}) \\[4pt] (\text{my})(\text{name}) \end{matrix}\)

\(\begin{matrix} ~\text{s}~ \\[4pt] (\text{s}) \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)


\(\text{Table 64.} ~~ \text{Analytic Codes for Interpreter B}\!\)
\(\text{Name}\!\) \(\text{Vector}\!\) \(\text{Conjunct Term}\!\) \(\text{Mnemonic}\!\) \(\text{Code}\!\)

\(\begin{matrix} \text{A} \\[4pt] \text{B} \\[4pt] {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\[4pt] {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {0}_X \\[4pt] {1}_X \\[4pt] {01}_Y \\[4pt] {11}_Y \\[4pt] {10}_Y \\[4pt] {00}_Y \end{matrix}\)

\(\begin{matrix} (x_1) \\[4pt] ~x_1~ \\[4pt] (y_1)~y_2~ \\[4pt] ~y_1~~y_2~ \\[4pt] ~y_1~(y_2) \\[4pt] (y_1)(y_2) \end{matrix}\)

\(\begin{matrix} (\text{self}) \\[4pt] ~\text{self}~ \\[4pt] (\text{my})~\text{name}~ \\[4pt] ~\text{my}~~\text{name}~ \\[4pt] ~\text{my}~(\text{name}) \\[4pt] (\text{my})(\text{name}) \end{matrix}\)

\(\begin{matrix} (\text{s}) \\[4pt] ~\text{s}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)


\(\text{Table 65.1} ~~ \operatorname{AIR}_1 (L_\text{A}) : \text{Analytic Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{s} \\[4pt] \text{s} \\[4pt] \text{s} \\[4pt] \text{s} \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{s}) \\[4pt] (\text{s}) \\[4pt] (\text{s}) \\[4pt] (\text{s}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)


\(\text{Table 65.2} ~~ \operatorname{AIR}_1 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} \text{s} \\[4pt] \text{s} \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \mapsto ~\text{s}~ \\[4pt] ~\text{m}~(\text{n}) \mapsto ~\text{s}~ \end{matrix}\)

\(\begin{matrix} (\text{s}) \\[4pt] (\text{s}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \mapsto (\text{s}) \\[4pt] (\text{m})(\text{n}) \mapsto (\text{s}) \end{matrix}\)


\(\text{Table 65.3} ~~ \operatorname{AIR}_1 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{dm})(\text{dn}) \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})(\text{dn}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{dm})(\text{dn}) \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})(\text{dn}) \end{matrix}\)


\(\text{Table 66.1} ~~ \operatorname{AIR}_1 (L_\text{B}) : \text{Analytic Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} (\text{s}) \\[4pt] (\text{s}) \\[4pt] (\text{s}) \\[4pt] (\text{s}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} \text{s} \\[4pt] \text{s} \\[4pt] \text{s} \\[4pt] \text{s} \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)


\(\text{Table 66.2} ~~ \operatorname{AIR}_1 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} (\text{s}) \\[4pt] (\text{s}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \mapsto (\text{s}) \\[4pt] (\text{m})(\text{n}) \mapsto (\text{s}) \end{matrix}\)

\(\begin{matrix} \text{s} \\[4pt] \text{s} \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \mapsto ~\text{s}~ \\[4pt] ~\text{m}~(\text{n}) \mapsto ~\text{s}~ \end{matrix}\)


\(\text{Table 66.3} ~~ \operatorname{AIR}_1 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \\[4pt] (\text{m})~\text{n}~ \\[4pt] (\text{m})(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{dm})(\text{dn}) \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})(\text{dn}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \\[4pt] ~\text{m}~~\text{n}~ \\[4pt] ~\text{m}~(\text{n}) \end{matrix}\)

\(\begin{matrix} (\text{dm})(\text{dn}) \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})~\text{dn}~ \\[4pt] (\text{dm})(\text{dn}) \end{matrix}\)


\(\text{Table 67.1} ~~ \operatorname{AIR}_2 (L_\text{A}) : \text{Analytic Representation of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)


\(\text{Table 67.2} ~~ \operatorname{AIR}_2 (\operatorname{Den}(L_\text{A})) : \text{Denotative Component of} ~ L_\text{A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{array}{r} {\langle * \rangle}_Y \mapsto {\langle * \rangle}_X \\[4pt] {\langle\text{m}\rangle}_Y \mapsto {\langle * \rangle}_X \end{array}\)

\(\begin{matrix} {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{array}{r} {\langle\text{n}\rangle}_Y \mapsto {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_Y \mapsto {\langle ! \rangle}_X \end{array}\)


\(\text{Table 67.3} ~~ \operatorname{AIR}_2 (\operatorname{Con}(L_\text{A})) : \text{Connotative Component of} ~ L_\text{A}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \end{matrix}\)


\(\text{Table 68.1} ~~ \operatorname{AIR}_2 (L_\text{B}) : \text{Analytic Representation of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)


\(\text{Table 68.2} ~~ \operatorname{AIR}_2 (\operatorname{Den}(L_\text{B})) : \text{Denotative Component of} ~ L_\text{B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{array}{r} {\langle\text{n}\rangle}_Y \mapsto {\langle ! \rangle}_X \\[4pt] {\langle ! \rangle}_Y \mapsto {\langle ! \rangle}_X \end{array}\)

\(\begin{matrix} {\langle * \rangle}_X \\[4pt] {\langle * \rangle}_X \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{array}{r} {\langle * \rangle}_Y \mapsto {\langle * \rangle}_X \\[4pt] {\langle\text{m}\rangle}_Y \mapsto {\langle * \rangle}_X \end{array}\)


\(\text{Table 68.3} ~~ \operatorname{AIR}_2 (\operatorname{Con}(L_\text{B})) : \text{Connotative Component of} ~ L_\text{B}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\) \(\text{Transition}\!\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \\[4pt] {\langle\text{n}\rangle}_Y \\[4pt] {\langle ! \rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \\[4pt] {\langle * \rangle}_Y \\[4pt] {\langle\text{m}\rangle}_Y \end{matrix}\)

\(\begin{matrix} {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}\text{n}\rangle}_{\operatorname{d}Y} \\[4pt] {\langle\operatorname{d}!\rangle}_{\operatorname{d}Y} \end{matrix}\)


\(\text{Table 69.} ~~ \text{Schematism of Sequential Inference}\!\)
\(\text{Initial Premiss}\!\) \(\text{Differential Premiss}\!\) \(\text{Inferred Sequel}\!\)

\(\begin{matrix} ~x~ ~\operatorname{at}~ t \\[4pt] ~x~ ~\operatorname{at}~ t \\[4pt] (x) ~\operatorname{at}~ t \\[4pt] (x) ~\operatorname{at}~ t \end{matrix}\)

\(\begin{matrix} ~\operatorname{d}x~ ~\operatorname{at}~ t \\[4pt] (\operatorname{d}x) ~\operatorname{at}~ t \\[4pt] ~\operatorname{d}x~ ~\operatorname{at}~ t \\[4pt] (\operatorname{d}x) ~\operatorname{at}~ t \end{matrix}\)

\(\begin{matrix} (x) ~\operatorname{at}~ t' \\[4pt] ~x~ ~\operatorname{at}~ t' \\[4pt] ~x~ ~\operatorname{at}~ t' \\[4pt] (x) ~\operatorname{at}~ t' \end{matrix}\)


\(\text{Table 70.1} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{A} (V_4)\!\)
\(\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{List} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}\) \(\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] r \\[4pt] s \\[4pt] t \end{matrix}\)

\(\begin{matrix} (\operatorname{d}\underline{\underline{\text{a}}}) (\operatorname{d}\underline{\underline{\text{b}}}) (\operatorname{d}\underline{\underline{\text{i}}}) (\operatorname{d}\underline{\underline{\text{u}}}) \\[4pt] ~\operatorname{d}\underline{\underline{\text{a}}}~ (\operatorname{d}\underline{\underline{\text{b}}}) ~\operatorname{d}\underline{\underline{\text{i}}}~ (\operatorname{d}\underline{\underline{\text{u}}}) \\[4pt] (\operatorname{d}\underline{\underline{\text{a}}}) ~\operatorname{d}\underline{\underline{\text{b}}}~ (\operatorname{d}\underline{\underline{\text{i}}}) ~\operatorname{d}\underline{\underline{\text{u}}}~ \\[4pt] ~\operatorname{d}\underline{\underline{\text{a}}}~ ~\operatorname{d}\underline{\underline{\text{b}}}~ ~\operatorname{d}\underline{\underline{\text{i}}}~ ~\operatorname{d}\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} \langle \operatorname{d}! \rangle \\[4pt] \langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle \\[4pt] \langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle \\[4pt] \langle \operatorname{d}* \rangle \end{matrix}\)

\(\begin{matrix} \operatorname{d}! \\[4pt] \operatorname{d}\underline{\underline{\text{a}}} \cdot \operatorname{d}\underline{\underline{\text{i}}} ~ ! \\[4pt] \operatorname{d}\underline{\underline{\text{b}}} \cdot \operatorname{d}\underline{\underline{\text{u}}} ~ ! \\[4pt] \operatorname{d}* \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_{\text{ai}} \\[4pt] \operatorname{d}_{\text{bu}} \\[4pt] \operatorname{d}_{\text{ai}} * \operatorname{d}_{\text{bu}} \end{matrix}\)


\(\text{Table 70.2} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{B} (V_4)\!\)
\(\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{List} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}\) \(\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] r \\[4pt] s \\[4pt] t \end{matrix}\)

\(\begin{matrix} (\operatorname{d}\underline{\underline{\text{a}}}) (\operatorname{d}\underline{\underline{\text{b}}}) (\operatorname{d}\underline{\underline{\text{i}}}) (\operatorname{d}\underline{\underline{\text{u}}}) \\[4pt] ~\operatorname{d}\underline{\underline{\text{a}}}~ (\operatorname{d}\underline{\underline{\text{b}}}) (\operatorname{d}\underline{\underline{\text{i}}}) ~\operatorname{d}\underline{\underline{\text{u}}}~ \\[4pt] (\operatorname{d}\underline{\underline{\text{a}}}) ~\operatorname{d}\underline{\underline{\text{b}}}~ ~\operatorname{d}\underline{\underline{\text{i}}}~ (\operatorname{d}\underline{\underline{\text{u}}}) \\[4pt] ~\operatorname{d}\underline{\underline{\text{a}}}~ ~\operatorname{d}\underline{\underline{\text{b}}}~ ~\operatorname{d}\underline{\underline{\text{i}}}~ ~\operatorname{d}\underline{\underline{\text{u}}}~ \end{matrix}\)

\(\begin{matrix} \langle \operatorname{d}! \rangle \\[4pt] \langle \operatorname{d}\underline{\underline{\text{a}}} ~ \operatorname{d}\underline{\underline{\text{u}}} \rangle \\[4pt] \langle \operatorname{d}\underline{\underline{\text{b}}} ~ \operatorname{d}\underline{\underline{\text{i}}} \rangle \\[4pt] \langle \operatorname{d}* \rangle \end{matrix}\)

\(\begin{matrix} \operatorname{d}! \\[4pt] \operatorname{d}\underline{\underline{\text{a}}} \cdot \operatorname{d}\underline{\underline{\text{u}}} ~ ! \\[4pt] \operatorname{d}\underline{\underline{\text{b}}} \cdot \operatorname{d}\underline{\underline{\text{i}}} ~ ! \\[4pt] \operatorname{d}* \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_{\text{au}} \\[4pt] \operatorname{d}_{\text{bi}} \\[4pt] \operatorname{d}_{\text{au}} * \operatorname{d}_{\text{bi}} \end{matrix}\)


\(\text{Table 70.3} ~~ \text{Group Representation} ~ \operatorname{Rep}^\text{C} (V_4)\!\)
\(\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{List} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}\) \(\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] r \\[4pt] s \\[4pt] t \end{matrix}\)

\(\begin{matrix} (\operatorname{d}\text{m}) (\operatorname{d}\text{n}) \\[4pt] ~\operatorname{d}\text{m}~ (\operatorname{d}\text{n}) \\[4pt] (\operatorname{d}\text{m}) ~\operatorname{d}\text{n}~ \\[4pt] ~\operatorname{d}\text{m}~ ~\operatorname{d}\text{n}~ \end{matrix}\)

\(\begin{matrix} \langle\operatorname{d}!\rangle \\[4pt] \langle\operatorname{d}\text{m}\rangle \\[4pt] \langle\operatorname{d}\text{n}\rangle \\[4pt] \langle\operatorname{d}*\rangle \end{matrix}\)

\(\begin{matrix} \operatorname{d}! \\[4pt] \operatorname{d}\text{m}! \\[4pt] \operatorname{d}\text{n}! \\[4pt] \operatorname{d}* \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_{\text{m}} \\[4pt] \operatorname{d}_{\text{n}} \\[4pt] \operatorname{d}_{\text{m}} * \operatorname{d}_{\text{n}} \end{matrix}\)


\(\text{Table 71.1} ~~ \text{The Differential Group} ~ G = V_4\!\)
\(\begin{matrix} \text{Abstract} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Logical} \\ \text{Element} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{List} \end{matrix}\) \(\begin{matrix} \text{Active} \\ \text{Term} \end{matrix}\) \(\begin{matrix} \text{Genetic} \\ \text{Element} \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] r \\[4pt] s \\[4pt] t \end{matrix}\)

\(\begin{matrix} (\operatorname{d}\text{m}) (\operatorname{d}\text{n}) \\[4pt] ~\operatorname{d}\text{m}~ (\operatorname{d}\text{n}) \\[4pt] (\operatorname{d}\text{m}) ~\operatorname{d}\text{n}~ \\[4pt] ~\operatorname{d}\text{m}~ ~\operatorname{d}\text{n}~ \end{matrix}\)

\(\begin{matrix} \langle\operatorname{d}!\rangle \\[4pt] \langle\operatorname{d}\text{m}\rangle \\[4pt] \langle\operatorname{d}\text{n}\rangle \\[4pt] \langle\operatorname{d}*\rangle \end{matrix}\)

\(\begin{matrix} \operatorname{d}! \\[4pt] \operatorname{d}\text{m}! \\[4pt] \operatorname{d}\text{n}! \\[4pt] \operatorname{d}* \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_{\text{m}} \\[4pt] \operatorname{d}_{\text{n}} \\[4pt] \operatorname{d}_{\text{m}} * \operatorname{d}_{\text{n}} \end{matrix}\)


\(\text{Table 71.2} ~~ \text{Cosets of} ~ G_\text{m} ~ \text{in} ~ G\!\)
\(\text{Group Coset}\!\) \(\text{Logical Coset}\!\) \(\text{Logical Element}\!\) \(\text{Group Element}\!\)
\(G_\text{m}\!\) \((\operatorname{d}\text{m})\!\)

\(\begin{matrix} (\operatorname{d}\text{m})(\operatorname{d}\text{n}) \\[4pt] (\operatorname{d}\text{m})~\operatorname{d}\text{n}~ \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_\text{n} \end{matrix}\)

\(G_\text{m} * \operatorname{d}_\text{m}\!\) \(\operatorname{d}\text{m}\!\)

\(\begin{matrix} ~\operatorname{d}\text{m}~(\operatorname{d}\text{n}) \\[4pt] ~\operatorname{d}\text{m}~~\operatorname{d}\text{n}~ \end{matrix}\)

\(\begin{matrix} \operatorname{d}_\text{m} \\[4pt] \operatorname{d}_\text{n} * \operatorname{d}_\text{m} \end{matrix}\)


\(\text{Table 71.3} ~~ \text{Cosets of} ~ G_\text{n} ~ \text{in} ~ G\!\)
\(\text{Group Coset}\!\) \(\text{Logical Coset}\!\) \(\text{Logical Element}\!\) \(\text{Group Element}\!\)
\(G_\text{n}\!\) \((\operatorname{d}\text{n})\!\)

\(\begin{matrix} (\operatorname{d}\text{m})(\operatorname{d}\text{n}) \\[4pt] ~\operatorname{d}\text{m}~(\operatorname{d}\text{n}) \end{matrix}\)

\(\begin{matrix} 1 \\[4pt] \operatorname{d}_\text{m} \end{matrix}\)

\(G_\text{n} * \operatorname{d}_\text{n}\!\) \(\operatorname{d}\text{n}\!\)

\(\begin{matrix} (\operatorname{d}\text{m})~\operatorname{d}\text{n}~ \\[4pt] ~\operatorname{d}\text{m}~~\operatorname{d}\text{n}~ \end{matrix}\)

\(\begin{matrix} \operatorname{d}_\text{n} \\[4pt] \operatorname{d}_\text{m} * \operatorname{d}_\text{n} \end{matrix}\)


\(\text{Table 72.1} ~~ \text{Sign Relation of Interpreter A}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 72.2} ~~ \text{Dyadic Projection} ~ L(\text{A})_{OS}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 72.3} ~~ \text{Dyadic Projection} ~ L(\text{A})_{OI}\!\)
\(\text{Object}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 72.4} ~~ \text{Dyadic Projection} ~ L(\text{A})_{SI}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 73.1} ~~ \text{Sign Relation of Interpreter B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 73.2} ~~ \text{Dyadic Projection} ~ L(\text{B})_{OS}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 73.3} ~~ \text{Dyadic Projection} ~ L(\text{B})_{OI}\!\)
\(\text{Object}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 73.4} ~~ \text{Dyadic Projection} ~ L(\text{B})_{SI}\!\)
\(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 74.1} ~~ \text{Relation} ~ L_0 =\{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 0 \}\!\)
\(x\!\) \(y\!\) \(z\!\)
\(\begin{matrix}0\\0\\1\\1\end{matrix}\) \(\begin{matrix}0\\1\\0\\1\end{matrix}\) \(\begin{matrix}0\\1\\1\\0\end{matrix}\)


\(\text{Table 74.2} ~~ \text{Dyadic Projection} ~ (L_0)_{12}\!\)
\(x\!\) \(y\!\)
\(\begin{matrix}0\\0\\1\\1\end{matrix}\) \(\begin{matrix}0\\1\\0\\1\end{matrix}\)


\(\text{Table 74.3} ~~ \text{Dyadic Projection} ~ (L_0)_{13}\!\)
\(x\!\) \(z\!\)
\(\begin{matrix}0\\0\\1\\1\end{matrix}\) \(\begin{matrix}0\\1\\1\\0\end{matrix}\)


\(\text{Table 74.4} ~~ \text{Dyadic Projection} ~ (L_0)_{23}\!\)
\(y\!\) \(z\!\)
\(\begin{matrix}0\\1\\0\\1\end{matrix}\) \(\begin{matrix}0\\1\\1\\0\end{matrix}\)


\(\text{Table 75.1} ~~ \text{Relation} ~ L_1 =\{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 1 \}\!\)
\(x\!\) \(y\!\) \(z\!\)
\(\begin{matrix}0\\0\\1\\1\end{matrix}\) \(\begin{matrix}0\\1\\0\\1\end{matrix}\) \(\begin{matrix}1\\0\\0\\1\end{matrix}\)


\(\text{Table 75.2} ~~ \text{Dyadic Projection} ~ (L_1)_{12}\!\)
\(x\!\) \(y\!\)
\(\begin{matrix}0\\0\\1\\1\end{matrix}\) \(\begin{matrix}0\\1\\0\\1\end{matrix}\)


\(\text{Table 75.3} ~~ \text{Dyadic Projection} ~ (L_1)_{13}\!\)
\(x\!\) \(z\!\)
\(\begin{matrix}0\\0\\1\\1\end{matrix}\) \(\begin{matrix}1\\0\\0\\1\end{matrix}\)


\(\text{Table 75.4} ~~ \text{Dyadic Projection} ~ (L_1)_{23}\!\)
\(y\!\) \(z\!\)
\(\begin{matrix}0\\1\\0\\1\end{matrix}\) \(\begin{matrix}1\\0\\0\\1\end{matrix}\)


\(\text{Table 76.} ~~ \text{Attributed Sign Relation for Interpreters A and B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{A} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{B}} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{A}} \\ {}^{\backprime\backprime} \text{B} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{i} {}^{\prime\prime\text{B}} \\ {}^{\backprime\backprime} \text{u} {}^{\prime\prime\text{A}} \end{matrix}\)


\(\text{Table 77.} ~~ \text{Augmented Sign Relation for Interpreters A and B}\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{A} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} \end{matrix}\)

\(\begin{matrix} {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{A} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{B} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{i} {}^\rangle ]_\text{B} {}^{\prime\prime} \\ {}^{\backprime\backprime} [ {}^\langle \text{u} {}^\rangle ]_\text{A} {}^{\prime\prime} \end{matrix}\)


\(\text{Table 80.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{A})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)


\(\text{Table 81.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{B})\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle\langle} \text{A} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{B} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{i} {}^{\rangle\rangle} \\ {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \end{matrix}\)


\(\text{Table 82.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{A} | E_1)\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)


\(\text{Table 83.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{B} | E_1)\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)


\(\text{Table 84.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{A} | E_2)\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{B} \\ \text{A} \\ \text{B} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{B} \\ \text{A} \\ \text{B} \end{matrix}\)


\(\text{Table 85.} ~~ \text{Reflective Extension} ~ \operatorname{Ref}^1 (\text{B} | E_2)\!\)
\(\text{Object}\!\) \(\text{Sign}\!\) \(\text{Interpretant}\!\)

\(\begin{matrix} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \\ {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{B} \\ \text{B} \\ \text{B} \\ \text{B} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} {}^{\langle} \text{A} {}^{\rangle} \\ {}^{\langle} \text{B} {}^{\rangle} \\ {}^{\langle} \text{i} {}^{\rangle} \\ {}^{\langle} \text{u} {}^{\rangle} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{B} \\ \text{B} \\ \text{A} \end{matrix}\)

\(\begin{matrix} \text{A} \\ \text{B} \\ \text{B} \\ \text{A} \end{matrix}\)


Current Work


Table 86.  Confounded Sign Relation C
	Object	Sign	Interpretant
	A	"A"	"A"
	A	"A"	"i"
	A	"A"	"u"
	A	"i"	"A"
	A	"i"	"i"
	A	"u"	"A"
	A	"u"	"u"
	B	"B"	"B"
	B	"B"	"i"
	B	"B"	"u"
	B	"i"	"B"
	B	"i"	"i"
	B	"u"	"B"
	B	"u"	"u"


Table 87.  Disjointed Sign Relation D
	Object	Sign	Interpretant
	AA	"A"A	"A"A
	AA	"A"A	"i"A
	AA	"i"A	"A"A
	AA	"i"A	"i"A
	AB	"A"B	"A"B
	AB	"A"B	"u"B
	AB	"u"B	"A"B
	AB	"u"B	"u"B
	BA	"B"A	"B"A
	BA	"B"A	"u"A
	BA	"u"A	"B"A
	BA	"u"A	"u"A
	BB	"B"B	"B"B
	BB	"B"B	"i"B
	BB	"i"B	"B"B
	BB	"i"B	"i"B