Difference between revisions of "Directory:Jon Awbrey/Papers/Riffs and Rotes"

MyWikiBiz, Author Your Legacy — Thursday December 26, 2024
Jump to navigationJump to search
Line 27: Line 27:
 
|}
 
|}
  
where <math>\text{p}_{i(k)}^{j(k)}</math> is the <math>k^\text{th}</math> prime power in the factorization and <math>\ell</math> is the number of distinct prime factors dividing <math>n.</math>
+
where <math>\text{p}_{i(k)}^{j(k)}</math> is the <math>k^\text{th}</math> prime power in the factorization and <math>\ell</math> is the number of distinct prime factors dividing <math>n.</math>  The factorization of <math>1</math> is defined as <math>1</math> in accord with the convention that an empty product is equal to <math>1.</math>
  
 
Let <math>I(n)</math> be the set of indices of primes that divide  <math>n</math> and let <math>j(i, n)</math> be the number of times that <math>\text{p}_i</math> divides <math>n.</math>  Then the prime factorization of <math>n</math> can be written in the following alternative form:
 
Let <math>I(n)</math> be the set of indices of primes that divide  <math>n</math> and let <math>j(i, n)</math> be the number of times that <math>\text{p}_i</math> divides <math>n.</math>  Then the prime factorization of <math>n</math> can be written in the following alternative form:
Line 42: Line 42:
 
9876543210
 
9876543210
 
& = & 2 \cdot 3^2 \cdot 5 \cdot {17}^2 \cdot 379721
 
& = & 2 \cdot 3^2 \cdot 5 \cdot {17}^2 \cdot 379721
& = & \text{p}_1^1 \text{p}_2^2 \text{p}_3^1 \text{p}_7^2 \text{p}_{32277}^1
+
& = & \text{p}_1^1 \text{p}_2^2 \text{p}_3^1 \text{p}_7^2 \text{p}_{32277}^1.
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|}
 
|}
 +
 +
Each index <math>i</math> and exponent <math>j</math> appearing in the prime factorization of a positive integer <math>n</math> is itself a positive integer, and thus has a prime factorization of its own.
  
 
==Riffs in Numerical Order==
 
==Riffs in Numerical Order==

Revision as of 19:26, 3 February 2010

Idea

Let \(\text{p}_i\) be the \(i^\text{th}\) prime, where the positive integer \(i\) is called the index of the prime \(\text{p}_i\) and the indices are taken in such a way that \(\text{p}_1 = 2.\) Thus the sequence of primes begins as follows:

\(\begin{matrix} \text{p}_1 = 2, & \text{p}_2 = 3, & \text{p}_3 = 5, & \text{p}_4 = 7, & \text{p}_5 = 11, & \text{p}_6 = 13, & \text{p}_7 = 17, & \text{p}_8 = 19, & \ldots \end{matrix}\)

The prime factorization of a positive integer \(n\) can be written in the following form:

\(n ~=~ \prod_{k = 1}^{\ell} \text{p}_{i(k)}^{j(k)},\)

where \(\text{p}_{i(k)}^{j(k)}\) is the \(k^\text{th}\) prime power in the factorization and \(\ell\) is the number of distinct prime factors dividing \(n.\) The factorization of \(1\) is defined as \(1\) in accord with the convention that an empty product is equal to \(1.\)

Let \(I(n)\) be the set of indices of primes that divide \(n\) and let \(j(i, n)\) be the number of times that \(\text{p}_i\) divides \(n.\) Then the prime factorization of \(n\) can be written in the following alternative form:

\(n ~=~ \prod_{i \in I(n)} \text{p}_{i}^{j(i, n)}.\)

For example:

\(\begin{matrix} 9876543210 & = & 2 \cdot 3^2 \cdot 5 \cdot {17}^2 \cdot 379721 & = & \text{p}_1^1 \text{p}_2^2 \text{p}_3^1 \text{p}_7^2 \text{p}_{32277}^1. \end{matrix}\)

Each index \(i\) and exponent \(j\) appearing in the prime factorization of a positive integer \(n\) is itself a positive integer, and thus has a prime factorization of its own.

Riffs in Numerical Order

\(\text{Riffs in Numerical Order}\!\)

 


\(1\!\)


\(\begin{array}{l} \varnothing \\ 1 \end{array}\)

Riff 2 Big.jpg


\(\text{p}\!\)


\(\begin{array}{l} 1\!:\!1 \\ 2 \end{array}\)

Riff 3 Big.jpg


\(\text{p}_\text{p}\!\)


\(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\)

Riff 4 Big.jpg


\(\text{p}^\text{p}\!\)


\(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\)

Riff 5 Big.jpg


\(\text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 3\!:\!1 \\ 5 \end{array}\)

Riff 6 Big.jpg


\(\text{p} \text{p}_\text{p}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}\)

Riff 7 Big.jpg


\(\text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 4\!:\!1 \\ 7 \end{array}\)

Riff 8 Big.jpg


\(\text{p}^{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!3 \\ 8 \end{array}\)

Riff 9 Big.jpg


\(\text{p}_\text{p}^\text{p}\!\)


\(\begin{array}{l} 2\!:\!2 \\ 9 \end{array}\)

Riff 10 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 3\!:\!1 \\ 10 \end{array}\)

Riff 11 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 5\!:\!1 \\ 11 \end{array}\)

Riff 12 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}\)

Riff 13 Big.jpg


\(\text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(\begin{array}{l} 6\!:\!1 \\ 13 \end{array}\)

Riff 14 Big.jpg


\(\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 4\!:\!1 \\ 14 \end{array}\)

Riff 15 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 3\!:\!1 \\ 15 \end{array}\)

Riff 16 Big.jpg


\(\text{p}^{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!4 \\ 16 \end{array}\)

Riff 17 Big.jpg


\(\text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(\begin{array}{l} 7\!:\!1 \\ 17 \end{array}\)

Riff 18 Big.jpg


\(\text{p} \text{p}_\text{p}^\text{p}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}\)

Riff 19 Big.jpg


\(\text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 8\!:\!1 \\ 19 \end{array}\)

Riff 20 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 3\!:\!1 \\ 20 \end{array}\)

Riff 21 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 4\!:\!1 \\ 21 \end{array}\)

Riff 22 Big.jpg


\(\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 5\!:\!1 \\ 22 \end{array}\)

Riff 23 Big.jpg


\(\text{p}_{\text{p}_\text{p}^\text{p}}\!\)


\(\begin{array}{l} 9\!:\!1 \\ 23 \end{array}\)

Riff 24 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!\)


\(\begin{array}{l} 1\!:\!3 ~~ 2\!:\!1 \\ 24 \end{array}\)

Riff 25 Big.jpg


\(\text{p}_{\text{p}_\text{p}}^\text{p}\!\)


\(\begin{array}{l} 3\!:\!2 \\ 25 \end{array}\)

Riff 26 Big.jpg


\(\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 6\!:\!1 \\ 26 \end{array}\)

Riff 27 Big.jpg


\(\text{p}_\text{p}^{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 2\!:\!3 \\ 27 \end{array}\)

Riff 28 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 4\!:\!1 \\ 28 \end{array}\)

Riff 29 Big.jpg


\(\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 10\!:\!1 \\ 29 \end{array}\)

Riff 30 Big.jpg


\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 30 \end{array}\)

Riff 31 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!\)


\(\begin{array}{l} 11\!:\!1 \\ 31 \end{array}\)

Riff 32 Big.jpg


\(\text{p}^{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!5 \\ 32 \end{array}\)

Riff 33 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 5\!:\!1 \\ 33 \end{array}\)

Riff 34 Big.jpg


\(\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 7\!:\!1 \\ 34 \end{array}\)

Riff 35 Big.jpg


\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 3\!:\!1 ~~ 4\!:\!1 \\ 35 \end{array}\)

Riff 36 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}\)

Riff 37 Big.jpg


\(\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!\)


\(\begin{array}{l} 12\!:\!1 \\ 37 \end{array}\)

Riff 38 Big.jpg


\(\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 8\!:\!1 \\ 38 \end{array}\)

Riff 39 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 6\!:\!1 \\ 39 \end{array}\)

Riff 40 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!3 ~~ 3\!:\!1 \\ 40 \end{array}\)

Riff 41 Big.jpg


\(\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!\)


\(\begin{array}{l} 13\!:\!1 \\ 41 \end{array}\)

Riff 42 Big.jpg


\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 4\!:\!1 \\ 42 \end{array}\)

Riff 43 Big.jpg


\(\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!\)


\(\begin{array}{l} 14\!:\!1 \\ 43 \end{array}\)

Riff 44 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 5\!:\!1 \\ 44 \end{array}\)

Riff 45 Big.jpg


\(\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 2\!:\!2 ~~ 3\!:\!1 \\ 45 \end{array}\)

Riff 46 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 9\!:\!1 \\ 46 \end{array}\)

Riff 47 Big.jpg


\(\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 15\!:\!1 \\ 47 \end{array}\)

Riff 48 Big.jpg


\(\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!\)


\(\begin{array}{l} 1\!:\!4 ~~ 2\!:\!1 \\ 48 \end{array}\)

Riff 49 Big.jpg


\(\text{p}_{\text{p}^\text{p}}^\text{p}\!\)


\(\begin{array}{l} 4\!:\!2 \\ 49 \end{array}\)

Riff 50 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 3\!:\!2 \\ 50 \end{array}\)

Riff 51 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 7\!:\!1 \\ 51 \end{array}\)

Riff 52 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 6\!:\!1 \\ 52 \end{array}\)

Riff 53 Big.jpg


\(\text{p}_{\text{p}^{\text{p}^\text{p}}}\!\)


\(\begin{array}{l} 16\!:\!1 \\ 53 \end{array}\)

Riff 54 Big.jpg


\(\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!3 \\ 54 \end{array}\)

Riff 55 Big.jpg


\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 3\!:\!1 ~~ 5\!:\!1 \\ 55 \end{array}\)

Riff 56 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!3 ~~ 4\!:\!1 \\ 56 \end{array}\)

Riff 57 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 8\!:\!1 \\ 57 \end{array}\)

Riff 58 Big.jpg


\(\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 10\!:\!1 \\ 58 \end{array}\)

Riff 59 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!\)


\(\begin{array}{l} 17\!:\!1 \\ 59 \end{array}\)

Riff 60 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}\)

Rotes in Numerical Order

Rote 1 Big.jpg


\(1\!\)


\(\begin{array}{l} \varnothing \\ 1 \end{array}\)

Rote 2 Big.jpg


\(\text{p}\!\)


\(\begin{array}{l} 1\!:\!1 \\ 2 \end{array}\)

Rote 3 Big.jpg


\(\text{p}_\text{p}\!\)


\(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\)

Rote 4 Big.jpg


\(\text{p}^\text{p}\!\)


\(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\)

Rote 5 Big.jpg


\(\text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 3\!:\!1 \\ 5 \end{array}\)

Rote 6 Big.jpg


\(\text{p} \text{p}_\text{p}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}\)

Rote 7 Big.jpg


\(\text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 4\!:\!1 \\ 7 \end{array}\)

Rote 8 Big.jpg


\(\text{p}^{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!3 \\ 8 \end{array}\)

Rote 9 Big.jpg


\(\text{p}_\text{p}^\text{p}\!\)


\(\begin{array}{l} 2\!:\!2 \\ 9 \end{array}\)

Rote 10 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 3\!:\!1 \\ 10 \end{array}\)

Rote 11 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 5\!:\!1 \\ 11 \end{array}\)

Rote 12 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}\)

Rote 13 Big.jpg


\(\text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(\begin{array}{l} 6\!:\!1 \\ 13 \end{array}\)

Rote 14 Big.jpg


\(\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 4\!:\!1 \\ 14 \end{array}\)

Rote 15 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 3\!:\!1 \\ 15 \end{array}\)

Rote 16 Big.jpg


\(\text{p}^{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!4 \\ 16 \end{array}\)

Rote 17 Big.jpg


\(\text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(\begin{array}{l} 7\!:\!1 \\ 17 \end{array}\)

Rote 18 Big.jpg


\(\text{p} \text{p}_\text{p}^\text{p}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}\)

Rote 19 Big.jpg


\(\text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 8\!:\!1 \\ 19 \end{array}\)

Rote 20 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 3\!:\!1 \\ 20 \end{array}\)

Rote 21 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 4\!:\!1 \\ 21 \end{array}\)

Rote 22 Big.jpg


\(\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 5\!:\!1 \\ 22 \end{array}\)

Rote 23 Big.jpg


\(\text{p}_{\text{p}_\text{p}^\text{p}}\!\)


\(\begin{array}{l} 9\!:\!1 \\ 23 \end{array}\)

Rote 24 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!\)


\(\begin{array}{l} 1\!:\!3 ~~ 2\!:\!1 \\ 24 \end{array}\)

Rote 25 Big.jpg


\(\text{p}_{\text{p}_\text{p}}^\text{p}\!\)


\(\begin{array}{l} 3\!:\!2 \\ 25 \end{array}\)

Rote 26 Big.jpg


\(\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 6\!:\!1 \\ 26 \end{array}\)

Rote 27 Big.jpg


\(\text{p}_\text{p}^{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 2\!:\!3 \\ 27 \end{array}\)

Rote 28 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 4\!:\!1 \\ 28 \end{array}\)

Rote 29 Big.jpg


\(\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 10\!:\!1 \\ 29 \end{array}\)

Rote 30 Big.jpg


\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 30 \end{array}\)

Rote 31 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!\)


\(\begin{array}{l} 11\!:\!1 \\ 31 \end{array}\)

Rote 32 Big.jpg


\(\text{p}^{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!5 \\ 32 \end{array}\)

Rote 33 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 5\!:\!1 \\ 33 \end{array}\)

Rote 34 Big.jpg


\(\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 7\!:\!1 \\ 34 \end{array}\)

Rote 35 Big.jpg


\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 3\!:\!1 ~~ 4\!:\!1 \\ 35 \end{array}\)

Rote 36 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}\)

Rote 37 Big.jpg


\(\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!\)


\(\begin{array}{l} 12\!:\!1 \\ 37 \end{array}\)

Rote 38 Big.jpg


\(\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 8\!:\!1 \\ 38 \end{array}\)

Rote 39 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 6\!:\!1 \\ 39 \end{array}\)

Rote 40 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!3 ~~ 3\!:\!1 \\ 40 \end{array}\)

Rote 41 Big.jpg


\(\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!\)


\(\begin{array}{l} 13\!:\!1 \\ 41 \end{array}\)

Rote 42 Big.jpg


\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 4\!:\!1 \\ 42 \end{array}\)

Rote 43 Big.jpg


\(\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!\)


\(\begin{array}{l} 14\!:\!1 \\ 43 \end{array}\)

Rote 44 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 5\!:\!1 \\ 44 \end{array}\)

Rote 45 Big.jpg


\(\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 2\!:\!2 ~~ 3\!:\!1 \\ 45 \end{array}\)

Rote 46 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 9\!:\!1 \\ 46 \end{array}\)

Rote 47 Big.jpg


\(\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 15\!:\!1 \\ 47 \end{array}\)

Rote 48 Big.jpg


\(\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!\)


\(\begin{array}{l} 1\!:\!4 ~~ 2\!:\!1 \\ 48 \end{array}\)

Rote 49 Big.jpg


\(\text{p}_{\text{p}^\text{p}}^\text{p}\!\)


\(\begin{array}{l} 4\!:\!2 \\ 49 \end{array}\)

Rote 50 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 3\!:\!2 \\ 50 \end{array}\)

Rote 51 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 7\!:\!1 \\ 51 \end{array}\)

Rote 52 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 6\!:\!1 \\ 52 \end{array}\)

Rote 53 Big.jpg


\(\text{p}_{\text{p}^{\text{p}^\text{p}}}\!\)


\(\begin{array}{l} 16\!:\!1 \\ 53 \end{array}\)

Rote 54 Big.jpg


\(\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!3 \\ 54 \end{array}\)

Rote 55 Big.jpg


\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 3\!:\!1 ~~ 5\!:\!1 \\ 55 \end{array}\)

Rote 56 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\)


\(\begin{array}{l} 1\!:\!3 ~~ 4\!:\!1 \\ 56 \end{array}\)

Rote 57 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 2\!:\!1 ~~ 8\!:\!1 \\ 57 \end{array}\)

Rote 58 Big.jpg


\(\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(\begin{array}{l} 1\!:\!1 ~~ 10\!:\!1 \\ 58 \end{array}\)

Rote 59 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!\)


\(\begin{array}{l} 17\!:\!1 \\ 59 \end{array}\)

Rote 60 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}\)

Selected Sequences

A061396

  • Number of "rooted index-functional forests" (Riffs) on n nodes.
  • Number of "rooted odd trees with only exponent symmetries" (Rotes) on 2n+1 nodes.
\(\text{Prime Factorizations, Riffs, Rotes, and Traversals}\!\)
\(\text{Integer}\!\) \(\text{Factorization}\!\) \(\text{Notation}\!\) \(\text{Riff Digraph}\!\) \(\text{Rote Graph}\!\) \(\text{Traversal}\!\)
\(1\!\) \(1\!\)     Rote 1 Big.jpg  
\(2\!\) \(\text{p}_1^1\!\) \(\text{p}\!\) Riff 2 Big.jpg Rote 2 Big.jpg \(((~))\)
\(3\!\)

\(\begin{array}{lll} \text{p}_2^1 & = & \text{p}_{\text{p}_1^1}^1 \end{array}\)

\(\text{p}_\text{p}\!\) Riff 3 Big.jpg Rote 3 Big.jpg \((((~))(~))\)
\(4\!\)

\(\begin{array}{lll} \text{p}_1^2 & = & \text{p}_1^{\text{p}_1^1} \end{array}\)

\(\text{p}^\text{p}\!\) Riff 4 Big.jpg Rote 4 Big.jpg \(((((~))))\)
\(5\!\)

\(\begin{array}{lll} \text{p}_3^1 & = & \text{p}_{\text{p}_2^1}^1 \'"`UNIQ-MathJax1-QINU`"' '"`UNIQ-MathJax2-QINU`"' '"`UNIQ-MathJax3-QINU`"' '"`UNIQ-MathJax4-QINU`"' :{| border="1" cellpadding="20" | [[Image:Rote 802701 Big.jpg|330px]] |} '"`UNIQ-MathJax5-QINU`"' <br> {| align="center" border="1" cellpadding="6" |+ style="height:25px" | \(a(n) = \text{Rote Height of}~ n\)

Rote 1 Big.jpg


\(1\!\)


\(a(1) ~=~ 0\)

Rote 2 Big.jpg


\(\text{p}\!\)


\(a(2) ~=~ 1\)

Rote 3 Big.jpg


\(\text{p}_\text{p}\!\)


\(a(3) ~=~ 2\)

Rote 4 Big.jpg


\(\text{p}^\text{p}\!\)


\(a(4) ~=~ 2\)

Rote 5 Big.jpg


\(\text{p}_{\text{p}_\text{p}}\!\)


\(a(5) ~=~ 3\)

Rote 6 Big.jpg


\(\text{p} \text{p}_\text{p}\!\)


\(a(6) ~=~ 2\)

Rote 7 Big.jpg


\(\text{p}_{\text{p}^\text{p}}\!\)


\(a(7) ~=~ 3\)

Rote 8 Big.jpg


\(\text{p}^{\text{p}_\text{p}}\!\)


\(a(8) ~=~ 3\)

Rote 9 Big.jpg


\(\text{p}_\text{p}^\text{p}\!\)


\(a(9) ~=~ 2\)

Rote 10 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(10) ~=~ 3\)

Rote 11 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(11) ~=~ 4\)

Rote 12 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p}\!\)


\(a(12) ~=~ 2\)

Rote 13 Big.jpg


\(\text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(13) ~=~ 3\)

Rote 14 Big.jpg


\(\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(14) ~=~ 3\)

Rote 15 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(15) ~=~ 3\)

Rote 16 Big.jpg


\(\text{p}^{\text{p}^\text{p}}\!\)


\(a(16) ~=~ 3\)

Rote 17 Big.jpg


\(\text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(a(17) ~=~ 4\)

Rote 18 Big.jpg


\(\text{p} \text{p}_\text{p}^\text{p}\!\)


\(a(18) ~=~ 2\)

Rote 19 Big.jpg


\(\text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(a(19) ~=~ 4\)

Rote 20 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(20) ~=~ 3\)

Rote 21 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(21) ~=~ 3\)

Rote 22 Big.jpg


\(\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(22) ~=~ 4\)

Rote 23 Big.jpg


\(\text{p}_{\text{p}_\text{p}^\text{p}}\!\)


\(a(23) ~=~ 3\)

Rote 24 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!\)


\(a(24) ~=~ 3\)

Rote 25 Big.jpg


\(\text{p}_{\text{p}_\text{p}}^\text{p}\!\)


\(a(25) ~=~ 3\)

Rote 26 Big.jpg


\(\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(26) ~=~ 3\)

Rote 27 Big.jpg


\(\text{p}_\text{p}^{\text{p}_\text{p}}\!\)


\(a(27) ~=~ 3\)

Rote 28 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(28) ~=~ 3\)

Rote 29 Big.jpg


\(\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(a(29) ~=~ 4\)

Rote 30 Big.jpg


\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(30) ~=~ 3\)

Rote 31 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!\)


\(a(31) ~=~ 5\)

Rote 32 Big.jpg


\(\text{p}^{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(32) ~=~ 4\)

Rote 33 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(33) ~=~ 4\)

Rote 34 Big.jpg


\(\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(a(34) ~=~ 4\)

Rote 35 Big.jpg


\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\)


\(a(35) ~=~ 3\)

Rote 36 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!\)


\(a(36) ~=~ 2\)

Rote 37 Big.jpg


\(\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!\)


\(a(37) ~=~ 3\)

Rote 38 Big.jpg


\(\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(a(38) ~=~ 4\)

Rote 39 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(39) ~=~ 3\)

Rote 40 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!\)


\(a(40) ~=~ 3\)

Rote 41 Big.jpg


\(\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!\)


\(a(41) ~=~ 4\)

Rote 42 Big.jpg


\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\)


\(a(42) ~=~ 3\)

Rote 43 Big.jpg


\(\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!\)


\(a(43) ~=~ 4\)

Rote 44 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(44) ~=~ 4\)

Rote 45 Big.jpg


\(\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(45) ~=~ 3\)

Rote 46 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!\)


\(a(46) ~=~ 3\)

Rote 47 Big.jpg


\(\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(a(47) ~=~ 4\)

Rote 48 Big.jpg


\(\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!\)


\(a(48) ~=~ 3\)

Rote 49 Big.jpg


\(\text{p}_{\text{p}^\text{p}}^\text{p}\!\)


\(a(49) ~=~ 3\)

Rote 50 Big.jpg


\(\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!\)


\(a(50) ~=~ 3\)

Rote 51 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\)


\(a(51) ~=~ 4\)

Rote 52 Big.jpg


\(\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\)


\(a(52) ~=~ 3\)

Rote 53 Big.jpg


\(\text{p}_{\text{p}^{\text{p}^\text{p}}}\!\)


\(a(53) ~=~ 4\)

Rote 54 Big.jpg


\(\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!\)


\(a(54) ~=~ 3\)

Rote 55 Big.jpg


\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\)


\(a(55) ~=~ 4\)

Rote 56 Big.jpg


\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\)


\(a(56) ~=~ 3\)

Rote 57 Big.jpg


\(\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\)


\(a(57) ~=~ 4\)

Rote 58 Big.jpg


\(\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\)


\(a(58) ~=~ 4\)

Rote 59 Big.jpg


\(\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!\)


\(a(59) ~=~ 5\)

Rote 60 Big.jpg


\(\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\)


\(a(60) ~=~ 3\)