Difference between revisions of "Exclusive disjunction"

MyWikiBiz, Author Your Legacy — Monday January 27, 2025
Jump to navigationJump to search
(table colors → table body (#f8f8ff = ghostwhite) table head (#e6e6ff = blue gray))
Line 3: Line 3:
 
The [[truth table]] of '''p XOR q''' (also written as '''p + q''' or '''p ≠ q''') is as follows:
 
The [[truth table]] of '''p XOR q''' (also written as '''p + q''' or '''p ≠ q''') is as follows:
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
 
|+ '''Exclusive Disjunction'''
 
|+ '''Exclusive Disjunction'''
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
 
! style="width:15%" | p
 
! style="width:15%" | p
 
! style="width:15%" | q
 
! style="width:15%" | q
Line 18: Line 20:
 
| T || T || F
 
| T || T || F
 
|}
 
|}
 +
 
<br>
 
<br>
  

Revision as of 21:56, 25 May 2009

Exclusive disjunction, also known as logical inequality or symmetric difference, is an operation on two logical values, typically the values of two propositions, that produces a value of true just in case exactly one of its operands is true.

The truth table of p XOR q (also written as p + q or p ≠ q) is as follows:


Exclusive Disjunction
p q p XOR q
F F F
F T T
T F T
T T F


The following equivalents can then be deduced:

\[\begin{matrix} p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ \\ & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\ \\ & = & (p \lor q) & \land & \lnot (p \land q) \end{matrix}\]

See also

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end <sharethis />