Difference between revisions of "Exclusive disjunction"

MyWikiBiz, Author Your Legacy — Thursday November 14, 2024
Jump to navigationJump to search
(apply column template)
Line 32: Line 32:
 
==See also==
 
==See also==
 
===Logical operators===
 
===Logical operators===
{|
+
 
| valign=top |
+
{{col-begin}}
 +
{{col-break}}
 
* [[Exclusive disjunction]]
 
* [[Exclusive disjunction]]
 
* [[Logical conjunction]]
 
* [[Logical conjunction]]
 
* [[Logical disjunction]]
 
* [[Logical disjunction]]
 
* [[Logical equality]]
 
* [[Logical equality]]
| valign=top |
+
{{col-break}}
 
* [[Logical implication]]
 
* [[Logical implication]]
 
* [[Logical NAND]]
 
* [[Logical NAND]]
 
* [[Logical NNOR]]
 
* [[Logical NNOR]]
 
* [[Logical negation|Negation]]
 
* [[Logical negation|Negation]]
|}
+
{{col-end}}
 +
 
 
===Related topics===
 
===Related topics===
{|
+
 
| valign=top |
+
{{col-begin}}
 +
{{col-break}}
 
* [[Ampheck]]
 
* [[Ampheck]]
 
* [[Boolean algebra]]
 
* [[Boolean algebra]]
 
* [[Boolean domain]]
 
* [[Boolean domain]]
 
* [[Boolean function]]
 
* [[Boolean function]]
| valign=top |
+
{{col-break}}
 
* [[Boolean logic]]
 
* [[Boolean logic]]
 
* [[Laws of Form]]
 
* [[Laws of Form]]
 
* [[Logic gate]]
 
* [[Logic gate]]
 
* [[Logical graph]]
 
* [[Logical graph]]
| valign=top |
+
{{col-break}}
 
* [[Peirce's law]]
 
* [[Peirce's law]]
 
* [[Propositional calculus]]
 
* [[Propositional calculus]]
 
* [[Sole sufficient operator]]
 
* [[Sole sufficient operator]]
 
* [[Zeroth order logic]]
 
* [[Zeroth order logic]]
|}
+
{{col-end}}
  
{{aficionados}}<sharethis />
+
<sharethis />
  
 
[[Category:Computer Science]]
 
[[Category:Computer Science]]

Revision as of 05:40, 25 May 2009

Exclusive disjunction, also known as logical inequality or symmetric difference, is an operation on two logical values, typically the values of two propositions, that produces a value of true just in case exactly one of its operands is true.

The truth table of p XOR q (also written as p + q or p ≠ q) is as follows:

Exclusive Disjunction
p q p XOR q
F F F
F T T
T F T
T T F


The following equivalents can then be deduced:

\[\begin{matrix} p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ \\ & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\ \\ & = & (p \lor q) & \land & \lnot (p \land q) \end{matrix}\]

See also

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end <sharethis />