User:Jon Awbrey/GRAPHICS

MyWikiBiz, Author Your Legacy — Thursday December 26, 2024
Jump to navigationJump to search

Differential Logic

ASCII Graphics

o-------------------------------------------------o
|                                                 |
|                                                 |
|        o-------------o   o-------------o        |
|       /               \ /               \       |
|      /                 o                 \      |
|     /                 /%\                 \     |
|    /                 /%%%\                 \    |
|   o                 o%%%%%o                 o   |
|   |                 |%%%%%|                 |   |
|   |        P        |%%%%%|        Q        |   |
|   |                 |%%%%%|                 |   |
|   o                 o%%%%%o                 o   |
|    \                 \%%%/                 /    |
|     \                 \%/                 /     |
|      \                 o                 /      |
|       \               / \               /       |
|        o-------------o   o-------------o        |
|                                                 |
|                                                 |
o-------------------------------------------------o
|  f =                  p q                       |
o-------------------------------------------------o
Figure 22-a.  Conjunction pq : X -> B
o-------------------------------------------------o
|                                                 |
|                                                 |
|        o-------------o   o-------------o        |
|       /               \ /               \       |
|      /        P        o        Q        \      |
|     /                 /%\                 \     |
|    /                 /%%%\                 \    |
|   o                 o.->-.o                 o   |
|   |    p(q)(dp)dq   |%\%/%|  (p)q dp(dq)    |   |
|   | o---------------|->o<-|---------------o |   |
|   |                 |%%^%%|                 |   |
|   o                 o%%|%%o                 o   |
|    \                 \%|%/                 /    |
|     \                 \|/                 /     |
|      \                 o                 /      |
|       \               /|\               /       |
|        o-------------o | o-------------o        |
|                        |                        |
|                        |                        |
|                        |                        |
|                        o                        |
|                  (p)(q) dp dq                   |
|                                                 |
o-------------------------------------------------o
|  f =                  p q                       |
o-------------------------------------------------o
|                                                 |
| Ef =              p  q   (dp)(dq)               |
|                                                 |
|           +       p (q)  (dp) dq                |
|                                                 |
|           +      (p) q    dp (dq)               |
|                                                 |
|           +      (p)(q)   dp  dq                |
|                                                 |
o-------------------------------------------------o
Figure 22-b.  Enlargement E[pq] : EX -> B
o-------------------------------------------------o
|                                                 |
|                                                 |
|        o-------------o   o-------------o        |
|       /               \ /               \       |
|      /        P        o        Q        \      |
|     /                 /%\                 \     |
|    /                 /%%%\                 \    |
|   o                 o%%%%%o                 o   |
|   |       (dp)dq    |%%%%%|    dp(dq)       |   |
|   | o<--------------|->o<-|-------------->o |   |
|   |                 |%%^%%|                 |   |
|   o                 o%%|%%o                 o   |
|    \                 \%|%/                 /    |
|     \                 \|/                 /     |
|      \                 o                 /      |
|       \               /|\               /       |
|        o-------------o | o-------------o        |
|                        |                        |
|                        |                        |
|                        v                        |
|                        o                        |
|                      dp dq                      |
|                                                 |
o-------------------------------------------------o
|  f =                  p q                       |
o-------------------------------------------------o
|                                                 |
| Df =              p  q  ((dp)(dq))              |
|                                                 |
|           +       p (q)  (dp) dq                |
|                                                 |
|           +      (p) q    dp (dq)               |
|                                                 |
|           +      (p)(q)   dp  dq                |
|                                                 |
o-------------------------------------------------o
Figure 22-c.  Difference D[pq] : EX -> B

JPEG Graphics

Field Picture PQ Conjunction.jpg
\(\text{Figure 22-a. Conjunction}~ pq : X \to \mathbb{B}\)
Field Picture PQ Enlargement Conjunction.jpg
\(\text{Figure 22-b. Enlargement}~ \operatorname{E}(pq) : \operatorname{E}X \to \mathbb{B}\)

\(\begin{array}{rcccccc} \operatorname{E}(pq) & = & p & \cdot & q & \cdot & (\operatorname{d}p)(\operatorname{d}q) \\[4pt] & + & p & \cdot & (q) & \cdot & (\operatorname{d}p)~\operatorname{d}q~ \\[4pt] & + & (p) & \cdot & q & \cdot & ~\operatorname{d}p~(\operatorname{d}q) \\[4pt] & + & (p) & \cdot & (q) & \cdot & ~\operatorname{d}p~~\operatorname{d}q~\end{array}\)

Field Picture PQ Difference Conjunction.jpg
\(\text{Figure 22-c. Difference}~ \operatorname{D}(pq) : \operatorname{E}X \to \mathbb{B}\)

\(\begin{array}{rcccccc} \operatorname{D}(pq) & = & p & \cdot & q & \cdot & ((\operatorname{d}p)(\operatorname{d}q)) \\[4pt] & + & p & \cdot & (q) & \cdot & ~(\operatorname{d}p)~\operatorname{d}q~~ \\[4pt] & + & (p) & \cdot & q & \cdot & ~~\operatorname{d}p~(\operatorname{d}q)~ \\[4pt] & + & (p) & \cdot & (q) & \cdot & ~~\operatorname{d}p~~\operatorname{d}q~~ \end{array}\)