User:Jon Awbrey/GRAPHICS
Image Gallery
Reduction 6:1
Cacti
Image | Scale |
![]() |
117 px → 20 px |
![]() |
117 px → 20 px |
Riffs
Rotes
Reduction 10:1
Cacti
Image | Scale |
![]() |
117 px → 12 px |
![]() |
117 px → 12 px |
Riffs
Rotes
Riffs in Numerical Order
∅1 |
p 1:12 |
pp 2:13 |
pp 1:24 |
ppp 3:15 |
ppp 1:1 2:16 |
ppp 4:17 |
ppp 1:38 |
ppp 2:29 |
pppp 1:1 3:110 |
pppp 5:111 |
pppp 1:2 2:112 |
pppp 6:113 |
pppp 1:1 4:114 |
ppppp 2:1 3:115 |
ppp 1:416 |
pppp 7:117 |
pppp 1:1 2:218 |
pppp 8:119 |
ppppp 1:2 3:120 |
ppppp 2:1 4:121 |
ppppp 1:1 5:122 |
pppp 9:123 |
ppppp 1:3 2:124 |
pppp 3:225 |
ppppp 1:1 6:126 |
pppp 2:327 |
ppppp 1:2 4:128 |
ppppp 10:129 |
pppppp 1:1 2:1 3:130 |
ppppp 11:131 |
pppp 1:532 |
pppppp 2:1 5:133 |
ppppp 1:1 7:134 |
pppppp 3:1 4:135 |
ppppp 1:2 2:236 |
ppppp 12:137 |
⋯ ppppp 1:1 8:138 |
⋯ pppppp 2:1 6:139 |
⋯ pppppp 1:3 3:140 |
⋯ ppppp 13:141 |
⋯ pppppp 1:1 2:1 4:142 |
⋯ ppppp 14:143 |
⋯ pppppp 1:2 5:144 |
⋯ pppppp 2:2 3:145 |
⋯ ppppp 1:1 9:146 |
⋯ pppppp 15:147 |
⋯ ppppp 1:4 2:148 |
⋯ pppp 4:249 |
⋯ ppppp 1:1 3:250 |
⋯ pppppp 2:1 7:151 |
⋯ pppppp 1:2 6:152 |
⋯ pppp 16:153 |
⋯ ppppp 1:1 2:354 |
⋯ ppppppp 3:1 5:155 |
⋯ pppppp 1:3 4:156 |
⋯ pppppp 2:1 8:157 |
⋯ pppppp 1:1 10:158 |
⋯ ppppp 17:159 |
⋯ ppppppp 1:2 2:1 3:160 |
Rotes in Numerical Order
∅1 |
1:12 |
2:13 |
1:24 |
3:15 |
1:1 2:16 |
4:17 |
1:38 |
2:29 |
1:1 3:110 |
5:111 |
1:2 2:112 |
6:113 |
1:1 4:114 |
2:1 3:115 |
1:416 |
7:117 |
1:1 2:218 |
8:119 |
1:2 3:120 |
2:1 4:121 |
1:1 5:122 |
9:123 |
1:3 2:124 |
3:225 |
1:1 6:126 |
2:327 |
1:2 4:128 |
10:129 |
1:1 2:1 3:130 |
11:131 |
1:532 |
2:1 5:133 |
1:1 7:134 |
3:1 4:135 |
1:2 2:236 |
12:137 |
1:1 8:138 |
2:1 6:139 |
1:3 3:140 |
13:141 |
1:1 2:1 4:142 |
14:143 |
1:2 5:144 |
2:2 3:145 |
1:1 9:146 |
15:147 |
1:4 2:148 |
4:249 |
1:1 3:250 |
2:1 7:151 |
1:2 6:152 |
16:153 |
1:1 2:354 |
3:1 5:155 |
1:3 4:156 |
2:1 8:157 |
1:1 10:158 |
17:159 |
1:2 2:1 3:160 |
Cactus Graphs
Hi Res
Lo Res
![]() |
![]() |
![]() |
![]() |
Differential Logic
ASCII Graphics
Series 1
o-------------------------------------------------o | | | | | o-------------o o-------------o | | / \ / \ | | / o \ | | / /%\ \ | | / /%%%\ \ | | o o%%%%%o o | | | |%%%%%| | | | | P |%%%%%| Q | | | | |%%%%%| | | | o o%%%%%o o | | \ \%%%/ / | | \ \%/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o | f = p q | o-------------------------------------------------o Figure 22-a. Conjunction pq : X -> B |
o-------------------------------------------------o | | | | | o-------------o o-------------o | | / \ / \ | | / P o Q \ | | / /%\ \ | | / /%%%\ \ | | o o.->-.o o | | | p(q)(dp)dq |%\%/%| (p)q dp(dq) | | | | o---------------|->o<-|---------------o | | | | |%%^%%| | | | o o%%|%%o o | | \ \%|%/ / | | \ \|/ / | | \ o / | | \ /|\ / | | o-------------o | o-------------o | | | | | | | | | | | o | | (p)(q) dp dq | | | o-------------------------------------------------o | f = p q | o-------------------------------------------------o | | | Ef = p q (dp)(dq) | | | | + p (q) (dp) dq | | | | + (p) q dp (dq) | | | | + (p)(q) dp dq | | | o-------------------------------------------------o Figure 22-b. Enlargement E[pq] : EX -> B |
o-------------------------------------------------o | | | | | o-------------o o-------------o | | / \ / \ | | / P o Q \ | | / /%\ \ | | / /%%%\ \ | | o o%%%%%o o | | | (dp)dq |%%%%%| dp(dq) | | | | o<--------------|->o<-|-------------->o | | | | |%%^%%| | | | o o%%|%%o o | | \ \%|%/ / | | \ \|/ / | | \ o / | | \ /|\ / | | o-------------o | o-------------o | | | | | | | | v | | o | | dp dq | | | o-------------------------------------------------o | f = p q | o-------------------------------------------------o | | | Df = p q ((dp)(dq)) | | | | + p (q) (dp) dq | | | | + (p) q dp (dq) | | | | + (p)(q) dp dq | | | o-------------------------------------------------o Figure 22-c. Difference D[pq] : EX -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o | | / \ | | / \ | | / \ | | / \ | | / \ | | / \ | | / \ | | o o | | | | | | | | | | | | | | | G | | | | | | | | | | | | | | | o o | | \ / | | \ / | | \ T / | | \ o<------------/-------------o | | \ / | | \ / | | \ / | | o-------------------o | | | | | o---------------------------------------------------------------------o Figure 23. Elements of a Cybernetic System |
Series 2
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / o \ | | / /%\ \ | | / /%%%\ \ | | / /%%%%%\ \ | | / /%%%%%%%\ \ | | / /%%%%%%%%%\ \ | | o o%%%%%%%%%%%o o | | | |%%%%%%%%%%%| | | | | |%%%%%%%%%%%| | | | | |%%%%%%%%%%%| | | | | P |%%%%%%%%%%%| Q | | | | |%%%%%%%%%%%| | | | | |%%%%%%%%%%%| | | | | |%%%%%%%%%%%| | | | o o%%%%%%%%%%%o o | | \ \%%%%%%%%%/ / | | \ \%%%%%%%/ / | | \ \%%%%%/ / | | \ \%%%/ / | | \ \%/ / | | \ o / | | \ / \ / | | o-------------------o o-------------------o | | | | | o---------------------------------------------------------------------o Figure 24-1. Proposition pq : X -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / P o Q \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | o o (dp) (dq) o o | | | | o-->--o | | | | | | \ / | | | | | (dp) dq | \ / | dp (dq) | | | | o<-----------------o----------------->o | | | | | | | | | | | | | | | | | | | | | | | | o o | o o | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \|/ / | | \ | / | | \ /|\ / | | o-------------------o | o-------------------o | | | | | dp | dq | | | | | v | | o | | | o---------------------------------------------------------------------o Figure 24-2. Tacit Extension !e![pq] : EX -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / P o Q \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | o o (dp) (dq) o o | | | | o-->--o | | | | | | \ / | | | | | (dp) dq | \ / | dp (dq) | | | | o----------------->o<-----------------o | | | | | ^ | | | | | | | | | | | | | | | | | | o o | o o | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \|/ / | | \ | / | | \ /|\ / | | o-------------------o | o-------------------o | | | | | dp | dq | | | | | | | | o | | | o---------------------------------------------------------------------o Figure 25-1. Enlargement E[pq] : EX -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / P o Q \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | o o o o | | | | | | | | | | | | | | | (dp) dq | | dp (dq) | | | | o<---------------->o<---------------->o | | | | | ^ | | | | | | | | | | | | | | | | | | o o | o o | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \|/ / | | \ | / | | \ /|\ / | | o-------------------o | o-------------------o | | | | | dp | dq | | | | | v | | o | | | o---------------------------------------------------------------------o Figure 25-2. Difference Map D[pq] : EX -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / P o Q \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / o \ \ | | / / ^ ^ \ \ | | o o / \ o o | | | | / \ | | | | | | / \ | | | | | |/ \| | | | | (dp)/ dq dp \(dq) | | | | /| |\ | | | | / | | \ | | | | / | | \ | | | o / o o \ o | | \ v \ dp dq / v / | | \ o<--------------------->o / | | \ \ / / | | \ \ / / | | \ \ / / | | \ o / | | \ / \ / | | o-------------------o o-------------------o | | | | | o---------------------------------------------------------------------o Figure 26-1. Differential or Tangent d[pq] : EX -> B |
o---------------------------------------------------------------------o | | | X | | o-------------------o o-------------------o | | / \ / \ | | / P o Q \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | / / \ \ | | o o o o | | | | | | | | | | | | | | | | dp dq | | | | | o<------------------------------->o | | | | | | | | | | | | | | | | | o | | | | o o ^ o o | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \ | / / | | \ \|/ / | | \ dp | dq / | | \ /|\ / | | o-------------------o | o-------------------o | | | | | | | | | | | v | | o | | | o---------------------------------------------------------------------o Figure 26-2. Remainder r[pq] : EX -> B |
JPEG Graphics
Series 1
![]() |
Figure 22-a. Conjunction pq:X→B |
![]() |
Figure 22-b. Enlargement E(pq):EX→B |
E(pq)=p⋅q⋅(dp)(dq)+p⋅(q)⋅(dp)~dq~+(p)⋅q⋅~dp~(dq)+(p)⋅(q)⋅~dp~~dq~ |
![]() |
Figure 22-c. Difference D(pq):EX→B |
D(pq)=p⋅q⋅((dp)(dq))+p⋅(q)⋅~(dp)~dq~~+(p)⋅q⋅~~dp~(dq)~+(p)⋅(q)⋅~~dp~~dq~~ |
Series 2
![]() |
Figure 24-1. Proposition pq:X→B |
![]() |
Figure 24-2. Tacit Extension ε(pq):EX→B |
ε(pq)=p⋅q⋅(dp)(dq)+p⋅q⋅(dp)~dq~+p⋅q⋅~dp~(dq)+p⋅q⋅~dp~~dq~ |
![]() |
Figure 25-1. Enlargement Map E(pq):EX→B |
E(pq)=p⋅q⋅(dp)(dq)+p⋅(q)⋅(dp)~dq~+(p)⋅q⋅~dp~(dq)+(p)⋅(q)⋅~dp~~dq~ |
![]() |
Figure 25-2. Difference Map D(pq):EX→B |
D(pq)=p⋅q⋅((dp)(dq))+p⋅(q)⋅~(dp)~dq~~+(p)⋅q⋅~~dp~(dq)~+(p)⋅(q)⋅~~dp~~dq~~ |
![]() |
Figure 26-1. Tangent Map d(pq):EX→B |
d(pq)=p⋅q⋅(dp,dq)+p⋅(q)⋅dq+(p)⋅q⋅dp+(p)⋅(q)⋅0 |
![]() |
Figure 26-2. Remainder Map r(pq):EX→B |
r(pq)=p⋅q⋅dp dq+p⋅(q)⋅dp dq+(p)⋅q⋅dp dq+(p)⋅(q)⋅dp dq |
Propositional Equation Reasoning Systems
Analysis of contingent propositions
![]() |
(26) |
![]() |
(27) |
Venn Diagram for (p~(q))~(p~(r)) |
![]() |
(28) |
Venn Diagram for (p~(q r)) |
![]() |
(29) |
Equation 1 : Proof 1
![]() |
(30) |
Equation 1 : Proof 2
Single Image Version
![]() |
(31) |
Serial Image Version
|
(31) |
|
(33) |
Equation 1 : Proof 3
|
|
Variant 1
o-----------------------------------------------------------o | Equation E_1. Proof 3. | o-----------------------------------------------------------o | 1 | | q o o r q o r | | | | | | | p o o p p o | | \ / | | | o---------o | | \ / | | \ / | | \ / | | \ / | | o | | | | | | | | | | | | | | @ | | | o==================================< CAST "p" >=============o | 2 | | q r q r q r qr | | o o o o o o o o o | | | | | |/ |/ |/ | | o o o o o o | | \ / | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | p o---------------o---o p | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | @ | | | o==================================< Domination >===========o | 3 | | q r q r | | o o o o o o | | | | | / / / | | o o o o o o | | \ / | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | p o---------------o---o p | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 4 | | q r q r | | o o o | | | | | | | o o o | | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | p o---------------o---o p | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | @ | | | o==================================< Emptiness >============o | 5 | | q r q r | | o o o | | | | | | | o o o | | \ / | | | o-------o o | | \ / | | | \ / | | | \ / | | | o o | | | | | | | | | | | | | | p o---------------o---o p | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 6 | | q r q r | | o o o | | | | | | | o o o | | \ / | | | o-------o | | \ / | | \ / | | \ / | | o | | | | | | | | | | | p o---------------o---o p | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | @ | | | o==================================< CAST "q" >=============o | 7 | | o o | | r r | r | | | o o o o o o r | | | | | | | | | | o o o o o o | | \ / | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Domination >===========o | 8 | | o o | | r r | r | | | o o o o o o | | | | | | | | | | o o o o o o | | \ / | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 9 | | r r r | | o o o | | | | | | | o o o o o | | / | \ / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Domination >===========o | 10 | | r r | | o o | | | | | | o o o o | | / | \ | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Spike >================o | 11 | | r r | | o o | | | | | | o o | | / | | | o-------o o | | \ / | | | \ / | | | \ / | | | o o | | | | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 12 | | r r | | o o | | | | | | o o | | / | | | o-------o | | \ / | | \ / | | \ / | | o | | | | | | | | | | | q o---------------o---o q | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< CAST "r" >=============o | 13 | | o o | | | | | | o o o o | | | | | | | | o o o o | | / | / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | r o---------------o---o r | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | q o-------o---o q | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 14 | | o o | | / | | | o-------o o-------o | | \ / \ / | | \ / \ / | | \ / \ / | | o o | | | | | | | | | | | | | | r o---------------o---o r | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | q o-------o---o q | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Emptiness & Spike >====o | 15 | | o o 16 | | | | | | | | | | | | | | o o | | | | | | | | | | | | | | r o---------------o---o r | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ / | | q o-------o---o q | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< Cancellation >=========o | 17 | | r o-------o---o r | | \ / | | \ / | | \ / | | q o-------o---o q | | \ / | | \ / | | \ / | | p o-------o---o p | | \ / | | \ / | | \ / | | @ | | | o==================================< QED >==================o |
(40) |
Variant 2
|
(40) |
Praeclarum Theorema : Proof by CAST
|
(23) |