MyWikiBiz, Author Your Legacy — Wednesday April 09, 2025
Jump to navigationJump to search
Appendices
Logical Translation Rule 1
|
|
\text{If}\!
|
s ~\text{is a sentence about things in the universe}~ X
|
|
\text{and}\!
|
p ~\text{is a proposition} ~:~ X \to \underline\mathbb{B}
|
|
\text{such that:}\!
|
|
|
\text{L1a.}\!
|
\downharpoonleft s \downharpoonright ~=~ p
|
|
\text{then}\!
|
\text{the following equations hold:}\!
|
|
|
\text{L1b}_{00}.\!
|
\downharpoonleft \operatorname{false} \downharpoonright
|
=\!
|
(~)
|
=\!
|
\underline{0} ~:~ X \to \underline\mathbb{B}
|
|
\text{L1b}_{01}.\!
|
\downharpoonleft \operatorname{not}~ s \downharpoonright
|
=\!
|
(\downharpoonleft s \downharpoonright)
|
=\!
|
(p) ~:~ X \to \underline\mathbb{B}
|
|
\text{L1b}_{10}.\!
|
\downharpoonleft s \downharpoonright
|
=\!
|
\downharpoonleft s \downharpoonright
|
=\!
|
p ~:~ X \to \underline\mathbb{B}
|
|
\text{L1b}_{11}.\!
|
\downharpoonleft \operatorname{true} \downharpoonright
|
=\!
|
((~))
|
=\!
|
\underline{1} ~:~ X \to \underline\mathbb{B}
|
|
Geometric Translation Rule 1
\text{Geometric Translation Rule 1}\!
|
|
|
|
\text{If}\!
|
Q \subseteq X
|
|
\text{and}\!
|
p ~:~ X \to \underline\mathbb{B}
|
|
\text{such that:}\!
|
|
|
\text{G1a.}\!
|
\upharpoonleft Q \upharpoonright ~=~ p
|
|
\text{then}\!
|
\text{the following equations hold:}\!
|
|
|
\text{G1b}_{00}.\!
|
\upharpoonleft \varnothing \upharpoonright
|
=\!
|
(~)
|
=\!
|
\underline{0} ~:~ X \to \underline\mathbb{B}
|
|
\text{G1b}_{01}.\!
|
\upharpoonleft {}^{_\sim} Q \upharpoonright
|
=\!
|
(\upharpoonleft Q \upharpoonright)
|
=\!
|
(p) ~:~ X \to \underline\mathbb{B}
|
|
\text{G1b}_{10}.\!
|
\upharpoonleft Q \upharpoonright
|
=\!
|
\upharpoonleft Q \upharpoonright
|
=\!
|
p ~:~ X \to \underline\mathbb{B}
|
|
\text{G1b}_{11}.\!
|
\upharpoonleft X \upharpoonright
|
=\!
|
((~))
|
=\!
|
\underline{1} ~:~ X \to \underline\mathbb{B}
|
|
Logical Translation Rule 2
\text{Logical Translation Rule 2}\!
|
|
|
|
\text{If}\!
|
s, t ~\text{are sentences about things in the universe}~ X
|
|
\text{and}\!
|
p, q ~\text{are propositions} ~:~ X \to \underline\mathbb{B}
|
|
\text{such that:}\!
|
|
|
\text{L2a.}\!
|
\downharpoonleft s \downharpoonright ~=~ p \quad \operatorname{and} \quad \downharpoonleft t \downharpoonright ~=~ q
|
|
\text{then}\!
|
\text{the following equations hold:}\!
|
|
|
\text{L2b}_{0}.\!
|
\downharpoonleft \operatorname{false} \downharpoonright
|
=\!
|
(~)
|
=\!
|
(~)
|
|
\text{L2b}_{1}.\!
|
\downharpoonleft \operatorname{neither}~ s ~\operatorname{nor}~ t \downharpoonright
|
=\!
|
(\downharpoonleft s \downharpoonright)(\downharpoonleft t \downharpoonright)
|
=\!
|
(p)(q)\!
|
|
\text{L2b}_{2}.\!
|
\downharpoonleft \operatorname{not}~ s ~\operatorname{but}~ t \downharpoonright
|
=\!
|
(\downharpoonleft s \downharpoonright) \downharpoonleft t \downharpoonright
|
=\!
|
(p) q\!
|
|
\text{L2b}_{3}.\!
|
\downharpoonleft \operatorname{not}~ s \downharpoonright
|
=\!
|
(\downharpoonleft s \downharpoonright)
|
=\!
|
(p)\!
|
|
\text{L2b}_{4}.\!
|
\downharpoonleft s ~\operatorname{and~not}~ t \downharpoonright
|
=\!
|
\downharpoonleft s \downharpoonright (\downharpoonleft t \downharpoonright)
|
=\!
|
p (q)\!
|
|
\text{L2b}_{5}.\!
|
\downharpoonleft \operatorname{not}~ t \downharpoonright
|
=\!
|
(\downharpoonleft t \downharpoonright)
|
=\!
|
(q)\!
|
|
\text{L2b}_{6}.\!
|
\downharpoonleft s ~\operatorname{or}~ t, ~\operatorname{not~both} \downharpoonright
|
=\!
|
(\downharpoonleft s \downharpoonright ~,~ \downharpoonleft t \downharpoonright)
|
=\!
|
(p, q)\!
|
|
\text{L2b}_{7}.\!
|
\downharpoonleft \operatorname{not~both}~ s ~\operatorname{and}~ t \downharpoonright
|
=\!
|
(\downharpoonleft s \downharpoonright ~ \downharpoonleft t \downharpoonright)
|
=\!
|
(p q)\!
|
|
\text{L2b}_{8}.\!
|
\downharpoonleft s ~\operatorname{and}~ t \downharpoonright
|
=\!
|
\downharpoonleft s \downharpoonright ~ \downharpoonleft t \downharpoonright
|
=\!
|
p q\!
|
|
\text{L2b}_{9}.\!
|
\downharpoonleft s ~\operatorname{is~equivalent~to}~ t \downharpoonright
|
=\!
|
((\downharpoonleft s \downharpoonright ~,~ \downharpoonleft t \downharpoonright))
|
=\!
|
((p, q))\!
|
|
\text{L2b}_{10}.\!
|
\downharpoonleft t \downharpoonright
|
=\!
|
\downharpoonleft t \downharpoonright
|
=\!
|
q\!
|
|
\text{L2b}_{11}.\!
|
\downharpoonleft s ~\operatorname{implies}~ t \downharpoonright
|
=\!
|
(\downharpoonleft s \downharpoonright (\downharpoonleft t \downharpoonright))
|
=\!
|
(p (q))\!
|
|
\text{L2b}_{12}.\!
|
\downharpoonleft s \downharpoonright
|
=\!
|
\downharpoonleft s \downharpoonright
|
=\!
|
p\!
|
|
\text{L2b}_{13}.\!
|
\downharpoonleft s ~\operatorname{is~implied~by}~ t \downharpoonright
|
=\!
|
((\downharpoonleft s \downharpoonright) \downharpoonleft t \downharpoonright)
|
=\!
|
((p) q)\!
|
|
\text{L2b}_{14}.\!
|
\downharpoonleft s ~\operatorname{or}~ t \downharpoonright
|
=\!
|
((\downharpoonleft s \downharpoonright)(\downharpoonleft t \downharpoonright))
|
=\!
|
((p)(q))\!
|
|
\text{L2b}_{15}.\!
|
\downharpoonleft \operatorname{true} \downharpoonright
|
=\!
|
((~))
|
=\!
|
((~))
|
|
Geometric Translation Rule 2
\text{Geometric Translation Rule 2}\!
|
|
|
|
\text{If}\!
|
P, Q \subseteq X
|
|
\text{and}\!
|
p, q ~:~ X \to \underline\mathbb{B}
|
|
\text{such that:}\!
|
|
|
\text{G2a.}\!
|
\upharpoonleft P \upharpoonright ~=~ p \quad \operatorname{and} \quad \upharpoonleft Q \upharpoonright ~=~ q
|
|
\text{then}\!
|
\text{the following equations hold:}\!
|
|
|
\text{G2b}_{0}.\!
|
\upharpoonleft \varnothing \upharpoonright
|
=\!
|
(~)
|
=\!
|
(~)
|
|
\text{G2b}_{1}.\!
|
\upharpoonleft \overline{P} ~\cap~ \overline{Q} \upharpoonright
|
=\!
|
(\upharpoonleft P \upharpoonright)(\upharpoonleft Q \upharpoonright)
|
=\!
|
(p)(q)\!
|
|
\text{G2b}_{2}.\!
|
\upharpoonleft \overline{P} ~\cap~ Q \upharpoonright
|
=\!
|
(\upharpoonleft P \upharpoonright) \upharpoonleft Q \upharpoonright
|
=\!
|
(p) q\!
|
|
\text{G2b}_{3}.\!
|
\upharpoonleft \overline{P} \upharpoonright
|
=\!
|
(\upharpoonleft P \upharpoonright)
|
=\!
|
(p)\!
|
|
\text{G2b}_{4}.\!
|
\upharpoonleft P ~\cap~ \overline{Q} \upharpoonright
|
=\!
|
\upharpoonleft P \upharpoonright (\upharpoonleft Q \upharpoonright)
|
=\!
|
p (q)\!
|
|
\text{G2b}_{5}.\!
|
\upharpoonleft \overline{Q} \upharpoonright
|
=\!
|
(\upharpoonleft Q \upharpoonright)
|
=\!
|
(q)\!
|
|
\text{G2b}_{6}.\!
|
\upharpoonleft P ~+~ Q \upharpoonright
|
=\!
|
(\upharpoonleft P \upharpoonright ~,~ \upharpoonleft Q \upharpoonright)
|
=\!
|
(p, q)\!
|
|
\text{G2b}_{7}.\!
|
\upharpoonleft \overline{P ~\cap~ Q} \upharpoonright
|
=\!
|
(\upharpoonleft P \upharpoonright ~ \upharpoonleft Q \upharpoonright)
|
=\!
|
(p q)\!
|
|
\text{G2b}_{8}.\!
|
\upharpoonleft P ~\cap~ Q \upharpoonright
|
=\!
|
\upharpoonleft P \upharpoonright ~ \upharpoonleft Q \upharpoonright
|
=\!
|
p q\!
|
|
\text{G2b}_{9}.\!
|
\upharpoonleft \overline{P ~+~ Q} \upharpoonright
|
=\!
|
((\upharpoonleft P \upharpoonright ~,~ \upharpoonleft Q \upharpoonright))
|
=\!
|
((p, q))\!
|
|
\text{G2b}_{10}.\!
|
\upharpoonleft Q \upharpoonright
|
=\!
|
\upharpoonleft Q \upharpoonright
|
=\!
|
q\!
|
|
\text{G2b}_{11}.\!
|
\upharpoonleft \overline{P ~\cap~ \overline{Q}} \upharpoonright
|
=\!
|
(\upharpoonleft P \upharpoonright (\upharpoonleft Q \upharpoonright))
|
=\!
|
(p (q))\!
|
|
\text{G2b}_{12}.\!
|
\upharpoonleft P \upharpoonright
|
=\!
|
\upharpoonleft P \upharpoonright
|
=\!
|
p\!
|
|
\text{G2b}_{13}.\!
|
\upharpoonleft \overline{\overline{P} ~\cap~ Q} \upharpoonright
|
=\!
|
((\upharpoonleft P \upharpoonright) \upharpoonleft Q \upharpoonright)
|
=\!
|
((p) q)\!
|
|
\text{G2b}_{14}.\!
|
\upharpoonleft P ~\cup~ Q \upharpoonright
|
=\!
|
((\upharpoonleft P \upharpoonright)(\upharpoonleft Q \upharpoonright))
|
=\!
|
((p)(q))\!
|
|
\text{G2b}_{15}.\!
|
\upharpoonleft X \upharpoonright
|
=\!
|
((~))
|
=\!
|
((~))
|
|