Boolean function

MyWikiBiz, Author Your Legacy — Saturday November 16, 2024
Revision as of 13:10, 22 October 2008 by Jon Awbrey (talk | contribs) (trim)
Jump to navigationJump to search

In mathematics, a finitary boolean function is a function of the form \(f : \mathbb{B}^k \to \mathbb{B},\) where \(\mathbb{B} = \{ 0, 1 \}\) is a boolean domain and where \(k\!\) is a nonnegative integer. In the case where \(k = 0,\!\) the function is simply a constant element of \(\mathbb{B}.\)

There are \(2^{2^k}\) such functions. These play a basic role in questions of complexity theory as well as the design of circuits and chips for digital computers. The properties of boolean functions play a critical role in cryptography, particularly in the design of symmetric key algorithms (see S-box).

A boolean mask operation on boolean-valued functions combines values point-wise, for example, by XOR, or other boolean operators.


See also

Template:Col-breakTemplate:Col-breakTemplate:Col-end

External links

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.