\(\begin{matrix}
f_0
\'"`UNIQ-MathJax1-QINU`"'
'''Generalized''' or '''n-ary''' XOR is true when the number of 1-bits is odd.
'"`UNIQ--pre-00000010-QINU`"'
'"`UNIQ--pre-00000011-QINU`"'
'"`UNIQ--pre-00000012-QINU`"'
'"`UNIQ-MathJax2-QINU`"'
===='"`UNIQ--h-31--QINU`"'[[Logical implication]]====
The '''material conditional''' and '''logical implication''' are both associated with an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if the first operand is true and the second operand is false.
The [[truth table]] associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical Implication'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ⇒ q
|-
| F || F || T
|-
| F || T || T
|-
| T || F || F
|-
| T || T || T
|}
<br>
===='"`UNIQ--h-32--QINU`"'[[Logical NAND]]====
The '''NAND operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are true. In other words, it produces a value of ''true'' if and only if at least one of its operands is false.
The [[truth table]] of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical NAND'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ↑ q
|-
| F || F || T
|-
| F || T || T
|-
| T || F || T
|-
| T || T || F
|}
<br>
===='"`UNIQ--h-33--QINU`"'[[Logical NNOR]]====
The '''NNOR operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are false. In other words, it produces a value of ''false'' if and only if at least one of its operands is true.
The [[truth table]] of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical NOR'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ↓ q
|-
| F || F || T
|-
| F || T || F
|-
| T || F || F
|-
| T || T || F
|}
<br>
=='"`UNIQ--h-34--QINU`"'Relational Tables==
==='"`UNIQ--h-35--QINU`"'Sign Relations===
{| cellpadding="4"
| width="20px" |
| align="center" | '''O''' || = || Object Domain
|-
| width="20px" |
| align="center" | '''S''' || = || Sign Domain
|-
| width="20px" |
| align="center" | '''I''' || = || Interpretant Domain
|}
<br>
{| cellpadding="4"
| width="20px" |
| align="center" | '''O'''
| =
| {Ann, Bob}
| =
| {A, B}
|-
| width="20px" |
| align="center" | '''S'''
| =
| {"Ann", "Bob", "I", "You"}
| =
| {"A", "B", "i", "u"}
|-
| width="20px" |
| align="center" | '''I'''
| =
| {"Ann", "Bob", "I", "You"}
| =
| {"A", "B", "i", "u"}
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>A</sub> = Sign Relation of Interpreter A
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"i"'''
|-
| '''A''' || '''"i"''' || '''"A"'''
|-
| '''A''' || '''"i"''' || '''"i"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"u"'''
|-
| '''B''' || '''"u"''' || '''"B"'''
|-
| '''B''' || '''"u"''' || '''"u"'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>B</sub> = Sign Relation of Interpreter B
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"u"'''
|-
| '''A''' || '''"u"''' || '''"A"'''
|-
| '''A''' || '''"u"''' || '''"u"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"i"'''
|-
| '''B''' || '''"i"''' || '''"B"'''
|-
| '''B''' || '''"i"''' || '''"i"'''
|}
<br>
==='"`UNIQ--h-36--QINU`"'Triadic Relations===
===='"`UNIQ--h-37--QINU`"'Algebraic Examples====
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>0</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 0}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''0'''
|-
| '''0''' || '''1''' || '''1'''
|-
| '''1''' || '''0''' || '''1'''
|-
| '''1''' || '''1''' || '''0'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>1</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 1}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''1'''
|-
| '''0''' || '''1''' || '''0'''
|-
| '''1''' || '''0''' || '''0'''
|-
| '''1''' || '''1''' || '''1'''
|}
<br>
===='"`UNIQ--h-38--QINU`"'Semiotic Examples====
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>A</sub> = Sign Relation of Interpreter A
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"i"'''
|-
| '''A''' || '''"i"''' || '''"A"'''
|-
| '''A''' || '''"i"''' || '''"i"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"u"'''
|-
| '''B''' || '''"u"''' || '''"B"'''
|-
| '''B''' || '''"u"''' || '''"u"'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>B</sub> = Sign Relation of Interpreter B
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"u"'''
|-
| '''A''' || '''"u"''' || '''"A"'''
|-
| '''A''' || '''"u"''' || '''"u"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"i"'''
|-
| '''B''' || '''"i"''' || '''"B"'''
|-
| '''B''' || '''"i"''' || '''"i"'''
|}
<br>
==='"`UNIQ--h-39--QINU`"'Dyadic Projections===
{| cellpadding="4"
| width="20px" |
| '''L'''<sub>OS</sub>
| =
| ''proj''<sub>OS</sub>('''L''')
| =
| { (''o'', ''s'') ∈ '''O''' × '''S''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''i'' ∈ '''I''' }
|-
| width="20px" |
| '''L'''<sub>SO</sub>
| =
| ''proj''<sub>SO</sub>('''L''')
| =
| { (''s'', ''o'') ∈ '''S''' × '''O''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''i'' ∈ '''I''' }
|-
| width="20px" |
| '''L'''<sub>IS</sub>
| =
| ''proj''<sub>IS</sub>('''L''')
| =
| { (''i'', ''s'') ∈ '''I''' × '''S''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''o'' ∈ '''O''' }
|-
| width="20px" |
| '''L'''<sub>SI</sub>
| =
| ''proj''<sub>SI</sub>('''L''')
| =
| { (''s'', ''i'') ∈ '''S''' × '''I''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''o'' ∈ '''O''' }
|-
| width="20px" |
| '''L'''<sub>OI</sub>
| =
| ''proj''<sub>OI</sub>('''L''')
| =
| { (''o'', ''i'') ∈ '''O''' × '''I''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''s'' ∈ '''S''' }
|-
| width="20px" |
| '''L'''<sub>IO</sub>
| =
| ''proj''<sub>IO</sub>('''L''')
| =
| { (''i'', ''o'') ∈ '''I''' × '''O''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''s'' ∈ '''S''' }
|}
<br>
===='"`UNIQ--h-40--QINU`"'Method 1 : Subtitles as Captions====
{| align="center" style="width:90%"
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>OS</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>OS</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|}
<br>
{| align="center" style="width:90%"
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>SI</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"i"'''
|-
| '''"i"''' || '''"A"'''
|-
| '''"i"''' || '''"i"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"u"'''
|-
| '''"u"''' || '''"B"'''
|-
| '''"u"''' || '''"u"'''
|}
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>SI</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"u"'''
|-
| '''"u"''' || '''"A"'''
|-
| '''"u"''' || '''"u"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"i"'''
|-
| '''"i"''' || '''"B"'''
|-
| '''"i"''' || '''"i"'''
|}
|}
<br>
{| align="center" style="width:90%"
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>OI</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>OI</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|}
<br>
===='"`UNIQ--h-41--QINU`"'Method 2 : Subtitles as Top Rows====
{| align="center" style="width:90%"
| align="center" style="width:45%" | ''proj''<sub>OS</sub>('''L'''<sub>A</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
| align="center" style="width:45%" | ''proj''<sub>OS</sub>('''L'''<sub>B</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|}
<br>
{| align="center" style="width:90%"
| align="center" style="width:45%" | ''proj''<sub>SI</sub>('''L'''<sub>A</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"i"'''
|-
| '''"i"''' || '''"A"'''
|-
| '''"i"''' || '''"i"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"u"'''
|-
| '''"u"''' || '''"B"'''
|-
| '''"u"''' || '''"u"'''
|}
| align="center" style="width:45%" | ''proj''<sub>SI</sub>('''L'''<sub>B</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"u"'''
|-
| '''"u"''' || '''"A"'''
|-
| '''"u"''' || '''"u"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"i"'''
|-
| '''"i"''' || '''"B"'''
|-
| '''"i"''' || '''"i"'''
|}
|}
<br>
{| align="center" style="width:90%"
| align="center" style="width:45%" | ''proj''<sub>OI</sub>('''L'''<sub>A</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
| align="center" style="width:45%" | ''proj''<sub>OI</sub>('''L'''<sub>B</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|}
<br>
==='"`UNIQ--h-42--QINU`"'Relation Reduction===
===='"`UNIQ--h-43--QINU`"'Method 1 : Subtitles as Captions====
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>0</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 0}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''0'''
|-
| '''0''' || '''1''' || '''1'''
|-
| '''1''' || '''0''' || '''1'''
|-
| '''1''' || '''1''' || '''0'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>1</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 1}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''1'''
|-
| '''0''' || '''1''' || '''0'''
|-
| '''1''' || '''0''' || '''0'''
|-
| '''1''' || '''1''' || '''1'''
|}
<br>
{| align="center" style="width:90%"
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XY''</sub>('''L'''<sub>0</sub>)
|- style="background:paleturquoise"
! X !! Y
|-
| '''0''' || '''0'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XZ''</sub>('''L'''<sub>0</sub>)
|- style="background:paleturquoise"
! X !! Z
|-
| '''0''' || '''0'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''1'''
|-
| '''1''' || '''0'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''YZ''</sub>('''L'''<sub>0</sub>)
|- style="background:paleturquoise"
! Y !! Z
|-
| '''0''' || '''0'''
|-
| '''1''' || '''1'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|}
|}
<br>
{| align="center" style="width:90%"
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XY''</sub>('''L'''<sub>1</sub>)
|- style="background:paleturquoise"
! X !! Y
|-
| '''0''' || '''0'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XZ''</sub>('''L'''<sub>1</sub>)
|- style="background:paleturquoise"
! X !! Z
|-
| '''0''' || '''1'''
|-
| '''0''' || '''0'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''YZ''</sub>('''L'''<sub>1</sub>)
|- style="background:paleturquoise"
! Y !! Z
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''0''' || '''0'''
|-
| '''1''' || '''1'''
|}
|}
<br>
{| align="center" cellpadding="4" style="text-align:center; width:90%"
| proj<sub>''XY''</sub>('''L'''<sub>0</sub>) = proj<sub>''XY''</sub>('''L'''<sub>1</sub>)
| proj<sub>''XZ''</sub>('''L'''<sub>0</sub>) = proj<sub>''XZ''</sub>('''L'''<sub>1</sub>)
| proj<sub>''YZ''</sub>('''L'''<sub>0</sub>) = proj<sub>''YZ''</sub>('''L'''<sub>1</sub>)
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>A</sub> = Sign Relation of Interpreter A
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"i"'''
|-
| '''A''' || '''"i"''' || '''"A"'''
|-
| '''A''' || '''"i"''' || '''"i"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"u"'''
|-
| '''B''' || '''"u"''' || '''"B"'''
|-
| '''B''' || '''"u"''' || '''"u"'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>B</sub> = Sign Relation of Interpreter B
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"u"'''
|-
| '''A''' || '''"u"''' || '''"A"'''
|-
| '''A''' || '''"u"''' || '''"u"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"i"'''
|-
| '''B''' || '''"i"''' || '''"B"'''
|-
| '''B''' || '''"i"''' || '''"i"'''
|}
<br>
{| align="center" style="width:90%"
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XY''</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XZ''</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''YZ''</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"i"'''
|-
| '''"i"''' || '''"A"'''
|-
| '''"i"''' || '''"i"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"u"'''
|-
| '''"u"''' || '''"B"'''
|-
| '''"u"''' || '''"u"'''
|}
|}
<br>
{| align="center" style="width:90%"
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XY''</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XZ''</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''YZ''</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"u"'''
|-
| '''"u"''' || '''"A"'''
|-
| '''"u"''' || '''"u"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"i"'''
|-
| '''"i"''' || '''"B"'''
|-
| '''"i"''' || '''"i"'''
|}
|}
<br>
{| align="center" cellpadding="4" style="text-align:center; width:90%"
| proj<sub>''XY''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''XY''</sub>('''L'''<sub>B</sub>)
| proj<sub>''XZ''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''XZ''</sub>('''L'''<sub>B</sub>)
| proj<sub>''YZ''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''YZ''</sub>('''L'''<sub>B</sub>)
|}
<br>
===='"`UNIQ--h-44--QINU`"'Method 2 : Subtitles as Top Rows====
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>0</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 0}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''0'''
|-
| '''0''' || '''1''' || '''1'''
|-
| '''1''' || '''0''' || '''1'''
|-
| '''1''' || '''1''' || '''0'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>1</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 1}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''1'''
|-
| '''0''' || '''1''' || '''0'''
|-
| '''1''' || '''0''' || '''0'''
|-
| '''1''' || '''1''' || '''1'''
|}
<br>
{| align="center" style="width:90%"
| align="center" | proj<sub>''XY''</sub>('''L'''<sub>0</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! X !! Y
|-
| '''0''' || '''0'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
| align="center" | proj<sub>''XZ''</sub>('''L'''<sub>0</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! X !! Z
|-
| '''0''' || '''0'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''1'''
|-
| '''1''' || '''0'''
|}
| align="center" | proj<sub>''YZ''</sub>('''L'''<sub>0</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! Y !! Z
|-
| '''0''' || '''0'''
|-
| '''1''' || '''1'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|}
|}
<br>
{| align="center" style="width:90%"
| align="center" | proj<sub>''XY''</sub>('''L'''<sub>1</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! X !! Y
|-
| '''0''' || '''0'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
| align="center" | proj<sub>''XZ''</sub>('''L'''<sub>1</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! X !! Z
|-
| '''0''' || '''1'''
|-
| '''0''' || '''0'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
| align="center" | proj<sub>''YZ''</sub>('''L'''<sub>1</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! Y !! Z
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''0''' || '''0'''
|-
| '''1''' || '''1'''
|}
|}
<br>
{| align="center" cellpadding="4" style="text-align:center; width:90%"
| proj<sub>''XY''</sub>('''L'''<sub>0</sub>) = proj<sub>''XY''</sub>('''L'''<sub>1</sub>)
| proj<sub>''XZ''</sub>('''L'''<sub>0</sub>) = proj<sub>''XZ''</sub>('''L'''<sub>1</sub>)
| proj<sub>''YZ''</sub>('''L'''<sub>0</sub>) = proj<sub>''YZ''</sub>('''L'''<sub>1</sub>)
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>A</sub> = Sign Relation of Interpreter A
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"i"'''
|-
| '''A''' || '''"i"''' || '''"A"'''
|-
| '''A''' || '''"i"''' || '''"i"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"u"'''
|-
| '''B''' || '''"u"''' || '''"B"'''
|-
| '''B''' || '''"u"''' || '''"u"'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>B</sub> = Sign Relation of Interpreter B
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"u"'''
|-
| '''A''' || '''"u"''' || '''"A"'''
|-
| '''A''' || '''"u"''' || '''"u"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"i"'''
|-
| '''B''' || '''"i"''' || '''"B"'''
|-
| '''B''' || '''"i"''' || '''"i"'''
|}
<br>
{| align="center" style="width:90%"
| align="center" style="width:30%" | proj<sub>''XY''</sub>('''L'''<sub>A</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
| align="center" style="width:30%" | proj<sub>''XZ''</sub>('''L'''<sub>A</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
| align="center" style="width:30%" | proj<sub>''YZ''</sub>('''L'''<sub>A</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"i"'''
|-
| '''"i"''' || '''"A"'''
|-
| '''"i"''' || '''"i"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"u"'''
|-
| '''"u"''' || '''"B"'''
|-
| '''"u"''' || '''"u"'''
|}
|}
<br>
{| align="center" style="width:90%"
| align="center" style="width:30%" | proj<sub>''XY''</sub>('''L'''<sub>B</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
| align="center" style="width:30%" | proj<sub>''XZ''</sub>('''L'''<sub>B</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
| align="center" style="width:30%" | proj<sub>''YZ''</sub>('''L'''<sub>B</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"u"'''
|-
| '''"u"''' || '''"A"'''
|-
| '''"u"''' || '''"u"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"i"'''
|-
| '''"i"''' || '''"B"'''
|-
| '''"i"''' || '''"i"'''
|}
|}
<br>
{| align="center" cellpadding="4" style="text-align:center; width:90%"
| proj<sub>''XY''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''XY''</sub>('''L'''<sub>B</sub>)
| proj<sub>''XZ''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''XZ''</sub>('''L'''<sub>B</sub>)
| proj<sub>''YZ''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''YZ''</sub>('''L'''<sub>B</sub>)
|}
<br>
==='"`UNIQ--h-45--QINU`"'Formatted Text Display===
: So in a triadic fact, say, the example <br>
{| align="center" cellspacing="8" style="width:72%"
| align="center" | ''A'' gives ''B'' to ''C''
|}
: we make no distinction in the ordinary logic of relations between the ''[[subject (grammar)|subject]] [[nominative]]'', the ''[[direct object]]'', and the ''[[indirect object]]''. We say that the proposition has three ''logical subjects''. We regard it as a mere affair of English grammar that there are six ways of expressing this: <br>
{| align="center" cellspacing="8" style="width:72%"
| style="width:36%" | ''A'' gives ''B'' to ''C''
| style="width:36%" | ''A'' benefits ''C'' with ''B''
|-
| ''B'' enriches ''C'' at expense of ''A''
| ''C'' receives ''B'' from ''A''
|-
| ''C'' thanks ''A'' for ''B''
| ''B'' leaves ''A'' for ''C''
|}
: These six sentences express one and the same indivisible phenomenon. (C.S. Peirce, "The Categories Defended", MS 308 (1903), EP 2, 170-171).
=='"`UNIQ--h-46--QINU`"'Work Area==
{| border="1" cellspacing="0" cellpadding="0" style="text-align:center"
|+ Binary Operations
|-
! style="width:2em" | x<sub>0</sub>
! style="width:2em" | x<sub>1</sub>
| style="width:2em" | <sup>2</sup>f<sub>0</sub>
| style="width:2em" | <sup>2</sup>f<sub>1</sub>
| style="width:2em" | <sup>2</sup>f<sub>2</sub>
| style="width:2em" | <sup>2</sup>f<sub>3</sub>
| style="width:2em" | <sup>2</sup>f<sub>4</sub>
| style="width:2em" | <sup>2</sup>f<sub>5</sub>
| style="width:2em" | <sup>2</sup>f<sub>6</sub>
| style="width:2em" | <sup>2</sup>f<sub>7</sub>
| style="width:2em" | <sup>2</sup>f<sub>8</sub>
| style="width:2em" | <sup>2</sup>f<sub>9</sub>
| style="width:2em" | <sup>2</sup>f<sub>10</sub>
| style="width:2em" | <sup>2</sup>f<sub>11</sub>
| style="width:2em" | <sup>2</sup>f<sub>12</sub>
| style="width:2em" | <sup>2</sup>f<sub>13</sub>
| style="width:2em" | <sup>2</sup>f<sub>14</sub>
| style="width:2em" | <sup>2</sup>f<sub>15</sub>
|-
| 0 || 0 || 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1
|-
| 1 || 0 || 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1
|-
| 0 || 1 || 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 || 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1
|-
| 1 || 1 || 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1
|}
<br>
==='"`UNIQ--h-47--QINU`"'Draft 1===
<center><table>
<caption>TRUTH TABLES FOR THE BOOLEAN OPERATIONS OF ARITY UP TO 2</caption>
<tr valign="top">
<td><table border="5" cellspacing="0">
<caption>Constants</caption>
<tr><td></td>
<td><sup>0</sup>f<sub>0</sub></td> <td><sup>0</sup>f<sub>1</sub></td>
</tr> <tr><td></td>
<td align="center">0</td> <td align="center">1</td>
</tr></table></td><td> </td>
<td><table border="5" cellspacing="0"><caption>Unary Operations</caption><tr>
<td>x<sub>0</sub></td> <td></td>
<td><sup>1</sup>f<sub>0 </sub></td> <td><sup>1</sup>f<sub>1 </sub></td>
<td><sup>1</sup>f<sub>2 </sub></td> <td><sup>1</sup>f<sub>3 </sub></td>
</tr><tr> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
</tr></table></td><td> </td>
<td><table border="5" cellspacing="0"><caption>Binary Operations</caption><tr>
<td>x<sub>0</sub></td> <td>x<sub>1</sub></td>
<td></td>
<td><sup>2</sup>f<sub>0</sub></td> <td><sup>2</sup>f<sub>1 </sub></td>
<td><sup> 2</sup>f<sub>2 </sub></td> <td><sup>2</sup>f<sub>3 </sub></td>
<td><sup>2</sup>f<sub>4 </sub></td> <td><sup>2</sup>f<sub>5 </sub></td>
<td><sup>2</sup>f<sub>6 </sub></td> <td><sup>2</sup>f<sub>7 </sub></td>
<td><sup>2</sup>f<sub>8 </sub></td> <td><sup>2</sup>f<sub>9 </sub></td>
<td><sup>2</sup>f<sub>10</sub></td> <td><sup>2</sup>f<sub>11</sub></td>
<td><sup>2</sup>f<sub>12</sub></td> <td><sup>2</sup>f<sub>13</sub></td>
<td><sup>2</sup>f<sub>14</sub></td> <td><sup>2</sup>f<sub>15</sub></td>
</tr><tr> <td align="center">0</td> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
</tr> <tr> <td align="center">0</td> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
</tr> </table></td>
</table></center>
==='"`UNIQ--h-48--QINU`"'Draft 2===
<center><table>
<caption>TRUTH TABLES FOR THE BOOLEAN OPERATIONS OF ARITY UP TO 2</caption>
<tr valign="top">
<td><table border="5" cellspacing="0">
<caption>Constants</caption>
<tr><td></td>
<td><sup>0</sup>f<sub>0</sub></td> <td><sup>0</sup>f<sub>1</sub></td>
</tr> <tr><td></td>
<td align="center">0</td> <td align="center">1</td>
</tr></table></td><td> </td>
<td><table border="5" cellspacing="0"><caption>Unary Operations</caption><tr>
<td>x<sub>0</sub></td> <td></td>
<td><sup>1</sup>f<sub>0 </sub></td> <td><sup>1</sup>f<sub>1 </sub></td>
<td><sup>1</sup>f<sub>2 </sub></td> <td><sup>1</sup>f<sub>3 </sub></td>
</tr><tr> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
</tr></table></td><td> </td>
<td><table border="5" cellspacing="0"><caption>Binary Operations</caption><tr>
<td>x<sub>0</sub></td> <td>x<sub>1</sub></td>
<td></td>
<td><sup>2</sup>f<sub>0</sub></td> <td><sup>2</sup>f<sub>1 </sub></td>
<td><sup> 2</sup>f<sub>2 </sub></td> <td><sup>2</sup>f<sub>3 </sub></td>
<td><sup>2</sup>f<sub>4 </sub></td> <td><sup>2</sup>f<sub>5 </sub></td>
<td><sup>2</sup>f<sub>6 </sub></td> <td><sup>2</sup>f<sub>7 </sub></td>
<td><sup>2</sup>f<sub>8 </sub></td> <td><sup>2</sup>f<sub>9 </sub></td>
<td><sup>2</sup>f<sub>10</sub></td> <td><sup>2</sup>f<sub>11</sub></td>
<td><sup>2</sup>f<sub>12</sub></td> <td><sup>2</sup>f<sub>13</sub></td>
<td><sup>2</sup>f<sub>14</sub></td> <td><sup>2</sup>f<sub>15</sub></td>
</tr><tr> <td align="center">0</td> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
</tr> <tr> <td align="center">0</td> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
</tr> </table></td>
</table></center>
=='"`UNIQ--h-49--QINU`"'Inquiry and Analogy==
==='"`UNIQ--h-50--QINU`"'Test Patterns===
{| align="center"
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
|-
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
|}<br>
{| align="center"
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
|-
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
|}<br>
{| align="center"
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
|-
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
|}<br>
==='"`UNIQ--h-51--QINU`"'Table 10===
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
|+ '''Table 10. Higher Order Propositions (''n'' = 1)'''
|- style="background:ghostwhite"
| align="right" | \(x\):
|
1 0
|
\(f\)
|
\(m_0\)
|
\(m_1\)
|
\(m_2\)
|
\(m_3\)
|
\(m_4\)
|
\(m_5\)
|
\(m_6\)
|
\(m_7\)
|
\(m_8\)
|
\(m_9\)
|
\(m_{10}\)
|
\(m_{11}\)
|
\(m_{12}\)
|
\(m_{13}\)
|
\(m_{14}\)
|
\(m_{15}\)
|